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ABSTRACT

The continuous growth of freight transportation over recent years has resulted in an
increasing proportion of commercial vehicles on our nations’ highways which has led to
higher truck volumes and more severe truck-related crashes every year. Safety
proponents have therefore been advocating for more restrictions to be placed on these
commercial vehicles in order to reduce the interaction of these larger vehicles and
passenger cars. A popular strategy is the use of different lane restrictions for trucks.
However, the effectiveness of these restrictions for trucks differs from case to case due to
unique factors of each site, including the type of restriction used, traffic conditions and
the geometric characteristics at the site. This has motivated the author to conduct this
study to evaluate the impact of these restrictions on traffic operations and safety on

freeways with different traffic and geometric characteristics.

For the safety evaluation, this research measures the impact of different truck lane
restriction strategies (TLRS) using conflict as the measurement of effectiveness (MOE).
Conflict has been proven to be highly related to traffic crushes on freeways (FHWA,
1990; Sayed and Zein, 1999; Kaub, 2000). The high frequency of conflicts has also made
it possible to collect adequate data for statistical analysis. The MOEs used to evaluate the
impact of different lane restrictions on operational performance were lane changes,

average speed, speed distribution, and volume distribution. Due to the lack of existing



highway locations with different lane restrictions considered in this study, the conflict
data were collected using a traffic simulation tool - PARAMICS V3.0 (Quadstone Ltd.,
2000), which can simulate the emergent interaction between vehicles but not random
crashes on the road network. The effectiveness of different lane restrictions in terms of
the above MOEs were evaluated for 14,400 different simulation scenarios by varying
lane restriction strategies, traffic conditions (volume, truck percentage) and geometric

characteristics (gradient, speed limit, interchange density).

The simulation results showed that all the geometric and traffic characteristics had
a significant impact on freeway safety and operation. In addition, truck percentage and
volume were identified as key factors that had a significant impact on the selection of the
optimal truck lane restriction strategy. The ANOVA analyses indicated that the degree of
effect of truck lane restriction strategies on safety intensify with the increase in truck
percentage and traffic volume. Optimal alternatives of truck lane restriction strategies
under different truck percentages and volumes were identified with the objective of
reducing traffic conflicts and enhancing LOS (level of service). Guidelines were then
developed for the application of truck lane restrictions under alternative traffic and

geometric conditions.
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CHAPTER 1 INTRODUCTION

1.1 Research Background

With the development of logistics in highway transportation, the operations of
commercial vehicles in the traffic mix have increased rapidly in terms of both volume
and dimensions which have lead to additional and more severe truck-related traffic
crashes each year. As a result, various truck-restrictive strategies have been employed to
reduce the interaction between trucks and passenger cars on the highways, and
consequently to diminish multi-vehicle incidents involving large trucks and passenger
cars. Among these truck restrictions, lane restrictions have been widely implemented as a
popular strategy across the United States. However, the effectiveness of different truck
lane restriction strategies (referred as TLRS later in the report) for trucks differs from
case to case with respect to operations and safety due to the unique factors of each site
including types of restriction used, traffic characteristics, and geometric design. This
project will therefore focus on evaluating the impacts of traffic and geometric
characteristics on the effectiveness of TLRS with respect to safety and traffic flow, and
developing guidelines for engineers to facilitate the application of lane restriction

strategies on freeways.

TLRS are expected to reduce freeway crashes as well as increasing traffic
mobility. Previous studies have mainly focused on identifying the operational impacts of
TLRS due to the extremely limited availability of crush data on the investigated site. In
measuring the operational performances of TLRS, speed, travel time, and throughput

were usually employed as MOEs (measurements of effectiveness) (Gan and Jo, 2003;



Mussa, 2004; Hoel and Peek, 1999; Vidunas and Hoel, 1997; Zavoina et al, 1991).
However, limited and inconsistent operational benefits have been found in such studies.
In identifying the safety effects of TLRS, lane-changing frequency and speed differential
were used as MOEs. However, the connection between such MOEs and crush rates on the
freeway has not been established. Even though the safety benefits from applying TLRS
are apparent in most cases, these benefits have not been identified at a quantitative level.
This has motivated the researchers conducting this study to identify safety impacts of
TLRS using conflict as the MOE. Conflict has been proven to be highly related to traffic
crushes on freeways and the high frequency of conflicts have made it possible to collect
enough data for a statistical analysis (FHWA, 1990; Sayed and Zein, 1999; Kaub, 2000).

Due to the limited availability of existing sites with different TLRS, this
evaluation was conducted through simulation using the PARAMICS V3.0 (Quadstone
Ltd., 2000) program. Its advanced Application Program Interface (API) functions can be
used to simulate and collect interaction data between vehicles. The effectiveness of
different lane restrictions in terms of the above MOEs was evaluated for 14,400 different
simulation scenarios by varying lane restriction strategies, traffic conditions (volume,
truck percentage) and geometric characteristics (gradient, speed limit, and interchange
density).

Based on the data acquired from the simulation, key factors (traffic or geometric),
which have significant impact on the MOEs under different TLRS, were identified
through ANOVA analysis. The influence of TLRS on the safety and operational MOEs

was analyzed for each category decided by the combination of number of lanes, demand



volume, and truck percentage. In addition, guidelines were developed for the selection of

an appropriate TLRS for different traffic and geometric characteristics.

1.2 Purpose and Scope

The purpose of this report was to evaluate the effectiveness of different TLRS on
safety and operational characteristics for different geometric and traffic conditions.

This study used conflict as a surrogate measurement for crash in the safety
evaluation and used conventional MOEs of average speed, lane changes, speed
distribution, and volume distribution between restricted and unrestricted lanes for the
operational evaluation. Only 3-, 4-, and 5-lane (in each direction) freeways were
considered in this study as they are typical in the existing freeway systems. 2-lane
highways were not considered, as it may not be wise to apply restrictions on such a
limited number of lanes. The lane restriction was to restrict trucks from using certain
lanes - exclusive truck lanes were not considered in this study because, in practice,
assigned truck lanes also allow other vehicles to travel on them. Grade, density of
interchanges, volume, truck percentage, and posted speed limits were used as
independent variables. In the traffic mix, only two types of vehicles were considered -
passenger cars and trucks. The simulation software PARAMICS was used as the tool to
collect data for the analysis because of its advanced Application Program Interface (API)

functions.



1.3 Study Objectives
The specific objectives of this study were as follows:
= identify the effectiveness of different TLRS on traffic safety using surrogate
measurements;
= identify the effectiveness of TLRS on traffic operation;
= identify the impacts of traffic and geometric factors on the safety and operational
performance of TLRS;

= produce guidelines on the application of TLRS for traffic engineers.

1.4 Structure of Report

The remainder of this report is organized as follows: Chapter 2 is a review of
relevant literature including previous studies on truck lane restrictions, safety surrogate
measurements, and relative functions of simulation software. Chapter 3 gives detailed
algorithms of safety surrogate measurements to be collected in simulation while Chapter
4 provides the methodology describing TLRS, MOEs, and simulation designs that have
been used in this study. Chapter 5 presents the analysis of safety performance of different
TLRS, while Chapter 6 shows corresponding results on operational performance on the
basis of simulation data. Chapter 7 gives guidelines based on analysis results from
Chapters 5 and 6 for application of TLRS. In addition, a list of future research topics is

presented.



CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

This chapter consists of three components - a review of previous studies on truck
lane restrictions, an introduction to the safety surrogate measurements, and an
explanation of functions of PARAMICS API in collecting the data required in this
research. The first part reviews the methodologies, simulation tools, conclusions from
previous studies and the deficiencies which could be overcome in this study; the second
part gives the concepts of the safety surrogate measurement (conflict) and its connections
to the crash rate, which has been proven by previous studies; while the third part explains
how the advanced API functions in PARAMICS can be used to simulate and collect data

on the interaction between vehicles on the freeway.

2.2 Previous Studies

There are four types of popular truck restriction methods, i.e. lane, speed, time-of-
day, and route restriction. Each method may be imposed on a section of roadway
separately or together with other method(s) in a combined strategy. The TLRS restricts
certain types of vehicle (e.g., a truck) from using certain lanes in order to reduce slow
traffic or interactions between cars and heavy vehicles when sharing the same lanes. The
speed restriction usually gives trucks a lower speed limit than that for passenger cars with
the premise that traveling at a lower speed makes it easier for heavy vehicles to
accommodate their differences from passenger cars since trucks have limited

maneuvering and braking capabilities due to their weight, length, and configuration. The



time-of-day restriction prevents trucks from using certain lanes or entire facilities during
a special period when the facility is not capable of accommodating trucks well under the
current LOS. The route restriction prohibits the truck from using certain routes, which
have inadequate geometric design, congested traffic, or high residential density that could
be harmed by hazardous materials possibly carried by trucks. All TLRS can be
categorized into two major types of strategies: 1) restricting trucks from certain lanes, and
2) exclusive truck lanes. In the former strategy, trucks are prevented from using certain
lanes, which actually act as passing lanes so that vehicles with higher speeds can overtake
the low speed traffic, i.e. trucks. This may reduce the opportunity to form a truck leading
shock wave when trucks cannot keep up with the speed of cars at grades on freeway
sections. The other type of TLRS is the exclusive truck lane which confines most trucks
within such lanes and prevents cars from using it at any time. Theoretically, this strategy
would dramatically reduce interactions between trucks and cars unless they needed to
change lanes to enter or leave the highway. However, in practice, most states allow
passenger cars to travel on the exclusive truck lanes. Hence, in this study, only the former

strategy is applied in the evaluation process.

Garber and Gadiraju (1990) conducted a study using simulation (SIMAN) to
identify the impact of different TLRS with respect to differential speed limit (DSL) on
operational and safety performance. Different simulation scenarios were produced by
varying the traffic volume, truck percentage, DSL, and truck lane restriction strategies.
They used volume distribution (trucks and cars in different lanes), speed distribution (in
restricted lanes), time headway, and accident rates as the MOEs. The evaluation results

indicate that 1) imposing the strategy of DSL alone does not impact significantly the



distribution of the volumes of trucks and cars in different lanes of the multilane highway;
2) imposing the strategy of both DSL and lane restriction will lead to an increase of
interaction between trucks and cars which creates a crash potential; 3) restricting trucks
to the right lane decreases the headway in the restricted lanes and the magnitude increases
with the increase of AADT and truck percentage; and 4) a skewed distribution of speed
and a potential crash increase will result with the imposition of such strategies. The MOE
of *accident rate” was a similar concept to “conflict” and the analysis was based on
simulation data. However, simulation tools, such as PARAMICS, VISSIM, and CORSIM
etc are more advanced. In addition, few lane restriction strategies were applied in this
study with no consideration of the geometric characteristics, and emphasis was placed on

the effectiveness of differential speed limits.

Hanscom (1990) evaluated the operational effectiveness of TLRS at three
highway locations by comparing the observed primary measures of effectiveness (MOES)
before and after imposition of TLRS. Two types of TLRS were applied, i.e. restricting
trucks from using the leftmost lane at two 3-lane (each direction) highway segments, and
restricting trucks from using the right lane at one 2-lane (each direction) highway
segments. The study results indicate that 1) reduced congestions were achieved in the 3-
lane segments with left-lane restrictions in terms of decreased rates of vehicles impeded
by trucks and reduced queue lengths; 2) reduced speeds of vehicles impeded by trucks
were found at 2-lane and right-lane restriction sections due to crowding of trucks on the
left lane and fewer passing gaps remaining for the vehicles following such trucks; and 3)

no speed changes were observed to indicate an adverse effect of imposing truck lane



restrictions. Few TLRS were incorporated in this study due to the limited site data and the

evaluation focused only on the operational aspect and not on safety.

Zavoina et al (1991) analyzed the operational effects of left-lane truck restriction
imposed on 1-20 (three lanes in each direction) near Fort Worth, TX. Based on the field
data collected on the investigated section on 1-20, vehicle distribution with respect to
classification, vehicle speed, and time gaps between vehicles were examined. The results
showed significant changes in the distribution of trucks due to lane restrictions while no
significant effect was observed in the distribution of cars, vehicle speeds, and time gaps
attributed to lane restrictions. However, no transferable results were produced in this
study since data were collected and analyzed for a very special case with respect to grade,

volume, truck percentage, geometric condition, and method of lane restriction.

Hoel and Peek (1999) evaluated the impacts of TLRS by a simulation method
(FRESIM) upon traffic operation characteristics of density, speed differential, and lane
changes under different scenarios taking into account different volumes, truck
percentages, initial volume distributions, grades, and TLRS. A total of six TLRS were
applied in the simulation: restricting trucks from the left lane on a 3-lane (in each
direction) freeway, restricting trucks from the right lane on a 3-lane (in each direction)
freeway, restricting trucks from the far left lane on a 4-lane (in each direction) freeway,
restricting trucks from the far two left lanes on a 4-lane (in each direction) freeway,
restricting trucks from the far right lane on a 4-lane (in each direction) freeway, and
restricting trucks from the far two right lanes on a 4-lane (in each direction) freeway. The
MOEs used in this study consisted of density, speed differential, and lane changes. As a

result, it was found that restricting trucks from the left lane with steep grades may cause



an increase in the speed differential while a decrease of density and the number of lane
changes, and restricting trucks from the right lane leads to an increase in the number of
lane changes for sites without exit and entry ramps. However, crash rates were not
directly addressed in this research and merging and diverging movements around the

ramp areas were also not considered.

Gan and Jo (2003) developed operational performance models using VISSIM to
identify the most operationally-efficient TLRS alternative on a freeway under prevailing
conditions in terms of number of lanes, interchange density, free-flow speed, volumes,
truck percentages, and ramp volumes. This research revealed that 1) truck restrictions
generally increase the average speed under low interchange density, low truck volume
and low ramp volume condition while causing a negligible reduction in average speed
under densely-spaced interchanges, high truck percentages, or high ramp volumes; 2)
truck restrictions produce a higher throughput than non-restriction alternatives and such
effectiveness became more apparent with the increase in the number of restricted lanes
under low interchange density; 3) speed differentials between restricted and non-
restricted lane groups are significant and the magnitude increases with the increase in the
number of interchanges, ramp volumes, truck percentages, and free-flow speed increases;
4) lane changes are generally reduced significantly by the application of truck restrictions
which indicates a potential improvement of freeway traffic safety; and 5) restricting
trucks from the leftmost lane gives good performance in 3-, 4- and 5-lane freeways while
restricting from the two leftmost lanes is more suitable for 4- and 5-lane freeway

corridors unless the interchanges are densely distributed and high truck volume exists.
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However, operational performance models developed are extremely complicated and

could not be used easily to select appropriate TLRS at a site.

Mussa (2004) evaluated the operation and safety characteristics of the 1-75
corridor of the 6-lane facility in north Florida where trucks are restricted from the
leftmost lane throughout the day. Both field and simulation analyses were conducted.
Based on the field data on geometrics and vehicle characteristics at various times of the
day, the simulation study was conducted to determine the effect of travel time and speeds
on the corridor with truck restrictions for different simulation scenarios taking into
account traffic volume, vehicle type distribution, time of day, and other pertinent factors.
Further, the study also investigated crashes in the study corridor to determine the safety
experience associated with the left-lane truck restriction. The simulation results showed
no significant difference in travel time and delay between restricted and non-restricted
corridors but the truck restriction decreased the number of lane changes. In addition, the
crash data analysis results indicate that improper lane changes contribute to traffic crash

occurrence.

In summary, most of the previous studies were conducted under limited geometric
and traffic conditions. In evaluating the impacts of truck lane restriction strategies on
safety, only conventional MOEs such as lane changes and speed differentials were
considered. Although some crash data were collected in several studies, the statistical
analysis seems unreliable due to a lack of adequate site data. To overcome these
shortcomings, this research used conflict as a surrogate measurement of safety as
adequate conflict data could be collected from simulation that can be used for statistical

analysis.
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2.3 Safety Surrogate Measurements

Traffic safety studies have put a lot of effort in relating the crash rate to the
operational independent variables such as AADT, volume to capacity ratio, and average
speed, etc. These studies usually produce regression models with dependent variables of
crash rates and the independent variables mentioned above. Hence, calibration of
parameters is required within each model to fit a special local site. However, the crash
rate is difficult to predict due to the low frequency of crashes and their random
occurrence which may be caused by factors beyond the independent variables considered
in the model. In other words, similar facilities may have different crash rates which may
result in unstable calibrated values of parameters. This situation has diverted researchers’
interests from crash rates to safety surrogate measurements which are directly related to
crash rates but occur at a higher frequency. Among the safety surrogate measurements
investigated over the years, conflict is one of the most popular and the high correlation
between crash rates and conflicts has been proven by previous work (FHWA, 1990;
Sayed and Zein, 1999; Kaub, 2000). In this study, the concept of conflict follows the
definition first given by Amundsen and Hyden (1977) as “An observable situation in
which two or more road users approach each other in time and space to such an extent

that there is risk of collision if their movements remain unchanged.”

Once a conflict is defined, the occurrence and severity are decided by the value of
a certain related measure. The primary occurrence measure of conflict used in previous
research is time to collision (TTC) which is defined as the expected time for two vehicles

to collide if they remain at their present speed and on the same path (FHWA, 2003). The
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algorithm developed by FHWA (2003) computes TTC as the time it takes the
encroaching vehicle to reach the current position of the other vehicle if the encroaching
vehicle remains at its present speed on the same path. The shorter the TTC, the higher
probability of a collision. At the same time, some researchers also use TTC as an
indication of crash severity (Hyden, 1987; Hayward, 1972) which is under debate by
other researchers because TTC does not directly give the absolute speed of the
encroaching vehicle even though it involves speed and headway during the calculation
(Kruysse, 1991; Tiwari et al., 1995). Hence, in evaluating the severity of the collision,
other values such as deceleration rate (DR) and absolute speed are highly recommended
in addition to TTC (Cooper and Ferguson, 1976; Darzentas et al., 1980). In this initial
study, only the frequency of conflict occurrence is used as an MOE to evaluate the safety
performance of truck lane restriction strategies. Future work will be done on investigating

the influence of lane restriction upon crash severity.

The research report FHWA-RD-03-050 gave detailed definitions of different
conflicts in 2003 at intersections including point and line conflicts and framed out the
basic process to acquire such conflict data from simulation. This study follows a similar
concept and process set out in the above report but is adjusted to fit the case of freeway.
Here, the conflict data collected in the simulation consist of lane-changing, merging, and
rear-end conflicts. The lane-changing conflict is defined as that between the vehicle that
makes a lane-changing maneuver and the vehicle following immediately after it in the
target lane; the merging conflict is defined as that between the vehicle merging to the
main road from a ramp and the vehicle following immediately after it in the target lane on

the main road. The rear-end conflict is defined as that between the vehicle that suddenly
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reduces its speed and the vehicle following immediately after it in the same lane and in
the same direction. In the simulation, the process of tracing potential conflict is triggered
by a lane-changing maneuver, a merging maneuver, or a sudden start of braking
maneuver. Once a process is triggered, the position, speed, and acceleration of the
vehicles involving the potential conflict will be traced for a certain period at each
simulation time step. At each step, the time to conflict (TTC) is calculated and updated if
the current TTC is less than all the previous ones during the tracing period. If the final
TTC is less than a certain threshold set in advance, a conflict of certain type will be
counted. Chapter 3 discusses detailed information regarding algorithms of safety and

surrogate measurements.

Field data collection of conflicts is a cost-consuming task because each one needs
to be identified at the site by observers regardless of whether this task is conducted at the
site or through extraction of data from video recorded in advance. In addition,
inconsistencies may exist among different observers for the same set of data and the
accuracy could be ruined by the subjectivity of observers. Hence, the attention of
researchers has been diverted to traffic simulation models to collect safety surrogate
measurement (FHWA, 2003). To be a candidate tool for safety surrogate measurements
through simulation, the software should have the capability of modeling driver/vehicle
interactions (car following, gap acceptance, lane change, etc), extracting detailed data
from the simulation (location, speed, acceleration/deceleration, etc), and
calibrating/selecting the parameters for each model. A lot of microscopic traffic
simulation software packages such as VISSIM, CORSIM, AINSUM, PARAMICS, etc

are capable of performing these functions. In this study, VISSIM and PARAMICS were
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available for use, but the latter was chosen because 1) PARAMICS has advanced
application programming interface (API) functions which could collect and deal with
conflict data during the process of simulation in real time; 2) the author has extensive

experience in PARAMICS simulation modeling and API programming.

2.4 PARAMICS API Functions

PARAMICS 3.0 (Parallel Microscopic Simulation), developed by Quadstone Ltd,
is a suite of high performance software tools consisting of PARAMICS Modeler,
Processor, Programmer, Analyzer and Monitor (Quadstone, 2002). The PARAMICS
Modeler simulates lane changing, gap acceptance, and car-following behavior for each
vehicle on urban and freeway networks with input geographic and traffic data in a
graphic user interface (GUI). It allows the user to set a time of less than one second, at
which the state (position, speed, acceleration/deceleration, etc) of each vehicle will be
updated. This makes it possible to investigate the interaction between the vehicles in
subtle details. The PARAMICS Processor can run the traffic simulation in a batch mode
without visualization which dramatically increases the speed of simulation. The
PARAMICS Analyzer is a tool that is used to read results from simulation, conduct data
analysis at certain levels, and presents the analysis results in a GUI format. The
PARAMICS Programmer is a Quadstone framework provided for advanced users to
customize many features of the underlying simulation model through an Application
Programming Interface (API). In this research, the Modeler is used to build up the
simulation network, to set up the truck lane restriction strategies, and to input traffic data;

the Processor is used to run the different scenarios of simulation in a batch mode by
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different lane restriction strategies, geometric conditions, and traffic inputs; the
Programmer is used to develop a process embedded in the Modeler to compute safety
measurements in the simulation, to extract required data, and to summarize the results.
This process is called Safety Surrogate Assessment Methodology (SSAM) (FHWA,

2003).

The success of developing the SSAM process here is attributed to the merits of
the advanced API functions in the PARAMICS Programmer. The Programmer is able to
pass additional network-wide configuration parameters into the simulation, read or write
information from any of the objects used to represent the network (such as intersection,
link, lane, vehicle, signal, loop detector, etc), and increase the detail of the measured data
available from the simulation by vehicle tagging or tracing the process of the simulation
(FHWA, 2003). The Programmer generally provides two groups of functions: control and
callback. The control functions are event-driven structures which are triggered at a
specific simulation stage or when special events occur; for example, when a vehicle
makes a lane-changing maneuver or passes a loop detector. The callback functions return
information about some of the attributes of the current vehicle (position, speed,
acceleration/deceleration, etc) and its environment, e.g. the relationships between the
current vehicle and other facilities in the network. The callback functions provide
adequate inputs for computation in the SSAM process while the control functions assure
only indispensable cases are considered and only necessary data are collected for a high

efficient process.
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2.5 Summary

The literature review of the previous research reveals that although much effort
has been placed in evaluating the effectiveness of truck lane restriction strategies, most of
these studies focused on special cases and the results produced cannot necessarily be
transferred to other conditions not considered in these studies. In addition, the safety
performance was evaluated on the operational measures such as speed differential and
lane changes. In order to effectively evaluate truck lane restriction strategies, more
reliable MOEs, such as safety surrogate measures, should be used. The extensive studies
that have been conducted on safety surrogate measures have proven a direct correlation
between traffic crashes and traffic conflicts (FHWA, 1990; Sayed and Zein, 1999; Kaub,
2000). The merits of PARAMICS in both microscopic simulation and advanced API
functions have also made it possible to collect interaction data between vehicles in the
simulation. The literature review indicates the necessity for this study as its results should
make a significant contribution to the safety of the art on the impact of truck lane

restriction on safety and operation on freeways.
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CHAPTER 3 ALGORITHMS OF SAFETY SURROGATE MEASURES

3.1 Introduction

The most popular measurement of safety of a highway or freeway facility is the
expected number of crashes that occur at the investigated facility during a certain period.
To evaluate the safety level of a newly-built or planned facility, researchers have been
relating crashes that have not occurred to some operational independent variables (such
as the AADT) that can be predicted at a certain reliable level. These usually result in a
regression model with a dependent variable of crash and independent variable(s) of
AADT and other operational variables. Most of the time, calibration is usually a
prerequisite for the model. However, the rareness of crash occurrence has made such
calibration less reliable, and the crash rate is still difficult to predict despite the large
body of studies in this area. This has diverted the interest of researchers over time to
obtain surrogate measurements that reflect the safety level of a facility, but have a much
higher frequency of occurrence than that of crashes. Among all safety surrogate
measurements, conflict is the most popular. Here the conflict is defined as an observable
situation in which two or more road users approach each other in time and space to such
an extent that there is the risk of collision if their movements remain unchanged
(Amundsen and Hyden, 1977). It should be noted that the definition of conflict in this

study includes only the potential collisions involving two vehicles.

Conflict is a potential collision event that does not occur due to evasive action
during a collision course. It could occur either at a particular location in time and space or

during a range of times and locations. The former is called a conflict point and the latter
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is a conflict line (FHWA, 2003). For example, at an intersection, conflict points exist
between the left-turn traffic and the through traffic in the opposite direction because they
could only collide in one possible location. However, when a vehicle on a freeway makes
a lane-changing maneuver, a conflict line exists between the current vehicle and the
vehicle immediately behind it on the target lane of the lane-changing action because there
are a series of times and locations that the two vehicles could collide on the target lane
during a short time period after the lane changing maneuver begins. A conflict line exists
at both intersections and freeway sections but a conflict point only exists at intersections.
Since this study intends to evaluate the safety impact of truck lane restriction strategies

on freeways, only conflict lines are incorporated in the conflict data collection.

The research report of FHWA-RD-03-050 gives detailed definitions of different
conflicts at an intersection including point conflicts and line conflicts and frame out the
basic process to acquire such conflict data from simulation. This study followed a similar
concept and process set out in the above report but fitted them for freeway. Here, three
kinds of conflicts are considered in the simulation: lane-changing, merging, and rear-end
conflicts. As shown in Fig. 1, a lane-changing conflict is defined as the conflict between
the vehicle that makes a lane-changing maneuver (vehicle A) and the vehicle following
immediately after it in the target lane (vehicle B). The merging conflict is defined as the
conflict between the vehicle merge to the main road from a ramp (vehicle D) and the
vehicle following immediately after it in the target lane on the main road (vehicle E). The
rear-end conflict is defined as the conflict between the vehicle that suddenly reduces its
speed (vehicle B) and the vehicle following immediately after it in the same lane and in

the same direction (vehicle C).



19

Figure 1 Definition of Conflicts

The typical crashes involving two vehicles on freeway segments are rear-end and
sideswipe crashes assuming a physical partition exists between opposite directions.
However, it is difficult to simulate the conflicts that would potentially lead to a sideswipe
crash because the position of the vehicle in the simulation is given by the current lane and
the distance of the vehicle from the end of the current link (freeway section between
ramps). Within a lane, there is no exact transverse coordinate provided. Hence, all three
types of conflicts defined above are rear-end events and are categorized into three types
of conflicts by the different triggering conditions that are mainly described by the original
positions by the lane of the encroaching and evasive vehicles. Such categorization of
conflicts assumes the lane restrictions will encourage or discourage different vehicles (car
or truck) to change lanes or stay in the current lane and the rate of these three types of
conflicts will reflect the potential risks when vehicles make lane changes, merge or
suddenly start to brake under such motivations. The following paragraphs will give
details of the descriptions, algorithms of these conflicts, and the process to obtain them

from simulation.
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3.2 Lane-Changing Conflict and Merging Conflict

3.2.1  Description of Events

The lane-changing and merging conflicts are similar because encroaching
vehicles in both cases make a lane-changing maneuver before the occurrence of a conflict
except that the encroaching vehicle in a merging conflict changes from the acceleration
lane to the rightmost lane. Since lane restrictions usually restrict trucks from using the
left lane, the rightmost lane is a sensitive area, especially for traffic from entrance ramps.
This is the main reason that these two types of conflicts are investigated separately.
However, in the following conflict event description, only a lane-changing conflict event

is introduced because the conflict event for merging conflict is almost the same.

A timeline of a conflict line event for a vehicle making a lane change in front of a
vehicle progressing in the same direction on the target lane is described in Fig. 2. This
timeline is adapted from the research report of FHWA-RD-03-050 (FHWA, 2003). The
upper curve represents the time-space trajectory of the encroaching vehicle (which makes
a lane change), while the lower curve represents the time-space trajectory of the evasive
vehicle (which immediately follows the encroaching vehicle in the target lane). In the
simulation, the whole timeline ends at a predefined maximum reference time. In this
example, six time points from t; to ts are employed to describe the first two conflict
points:

e At time t;, the encroaching vehicle makes a lane-change maneuver into the same lane

as the evasive vehicle;
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At time ty, the evasive vehicle realizes that a collision might occur and begins braking
to avoid the collision;

At time t3, the next time step of the simulation is reached and state variables for each
vehicle are updated,;

At time t4, the evasive vehicle would reach the first conflict point if it did not
decelerate at t2;

At time ts, the evasive vehicle would reach the second conflict point if it did not
decelerate at t3;

At time tg, the predefined maximum reference conflict time is reached.
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Figure 2 Conflict Line of Lane-Changing Conflict

(Adapted from FHWA-RD-03-050, FHWA final report, 2003)

Here, the difference between time t; and t; is the TTC for the first conflict point,
e.g. for the initial states (position, speed, acceleration/deceleration) immediately after the
start of encroachment, the TTC is the projected time the evasive vehicle needs to reach
the position where the encroaching vehicle initiated a lane-changing maneuver if the
evasive vehicle’s speed stays unchanged. Similarly, the difference between time ts and t3
is the TTC for the second conflict point, e.g. for the updated states (position, speed,
acceleration /deceleration) at the beginning of the next simulation time step after the start
of encroachment, the TTC is the projected time the evasive vehicle needs to reach the
position of the encroaching vehicle at the start of the second time step if its speed stays
unchanged. During the course of a lane-changing or merging conflict line event, there
could be more than two conflict points depending on the value of time step parameter in
the simulation and the predefined maximum reference conflict time. The whole course of
conflict event may end before the predefined maximum reference time is reached earlier
if the evasive vehicle makes a lane change to avoid acollision or the encroaching vehicle

makes a lane change to get off the lane or main road.

3.2.2  Computational Algorithm

The computational algorithm in simulation to calculate and collect the safety surrogate

measurements of lane-changing or merging conflict is given in detail as follows:
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Triggering A vehicle on the main road accepts a gap and makes a lane change to
condition: the adjacent lane in the same direction or a vehicle on the ramp
accepts a gap and makes a lane change to the rightmost lane of the

main road from the acceleration lane.

1 Record

1.1 The current time step ty;

1.2 The vehicle ID of the current (encroaching) vehicle;

1.3 The position of the encroaching vehicle on the target lane;

1.4 The speed of the encroaching vehicle;

1.5 The acceleration/deceleration of the encroaching vehicle;

1.6 The vehicle ID of the vehicle immediately behind the encroaching

vehicle on the target lane (evasive vehicle);

1.7 The position of the evasive vehicle on the target lane;

1.8 The speed of the evasive vehicle;

1.9 The acceleration/deceleration of the evasive vehicle;

2 Compute

2.1 The first conflict point (position of encroaching vehicle at time t;);



2.2 The project time t, for the evasive vehicle to reach the first conflict

point;

2.3 Thefirst TTC as ty —ty;

24 Save TTC=TTC (ty).

3 Repeat step 1 until:

The predefined maximum reference time (5 sec) is reached, or

The encroaching vehicle makes a lane change to another lane, or

The evasive vehicle makes a lane change to another lane.

3.1 Record the updated conflict point of the encroaching vehicle at the

start of the current time step tc;

3.2 Compute the projected time t, for the evasive vehicle to reach the

updated conflict point;

3.3 Compute the current TTC as t, — t;

3.4 Check:

If TTC(t) < TTC (t-1), save TTC = TTC(t).

4 Determine whether a conflict occurs when:

The predefined maximum reference time is reached, or

24
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The encroaching vehicle makes a lane change to another lane, or

The evasive vehicle makes a lane change to another lane.

4.1 IfTTC < TTC_upper_limit (predefined parameter= 0.5 sec), count

and save this event;

Otherwise, do not save event data.

End of the process.

3.3 Rear-End Conflict

3.3.1 Description of Events

The rear-end conflict occurs when a vehicle suddenly slows down while the
vehicle immediately following it is too close to react at a safe braking speed. This conflict
would force the following vehicle to brake hard to avoid a rear-end collision. Such a
slowdown could be caused by emergencies in front of the leading (encroaching) vehicle
or the maneuver of the leading vehicle to change lanes or get off the main road. As
previously discussed, the lane-changing and merging conflicts are also rear-end events
while the original lane of the encroaching vehicle is different from that of the evasive

vehicle. In this part, the rear-end conflicts exclude the events in 3.1.

A timeline of a rear-end conflict line event for a vehicle making a lane change in
front of a vehicle progressing in the same direction on the target lane is described in Fig.

3. This timeline is adapted from the research report of FHWA-RD-03-050 (FHWA, 2003).



26

The upper curve represents the time-space trajectory of the encroaching vehicle (which
makes a lane change) while the lower curve represents the time-space trajectory of the
evasive vehicle (which immediately follows the encroaching vehicle in the target lane).
In the simulation, the whole timeline ends at a predefined maximum reference time. In
this example, six time points from t; to ts are employed to describe the first two conflict
points:
e Attime ty, the leading (encroaching) vehicle suddenly slows down;
e At time tp, the evasive vehicle realizes that a collision might occur and begins
braking to avoid the collision;
e At time t3, the next time step of the simulation is reached and state variables for
each vehicle are updated;
e At time ts, the evasive vehicle would reach the first conflict point if it did not
decelerate at ty;
e At time ts, the evasive vehicle would reach the second conflict point if it did not
decelerate at ts.

o Attime tg, the predefined maximum reference conflict time is reached.
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Figure 3 Conflict Line of Rear-End Conflict

(Adapted from FHWA-RD-03-050, FHWA final report, 2003)

Here, the difference between times t; and t; is the TTC for the first conflict point,
e.g. for the initial states (position, speed, acceleration/deceleration) immediately after the
start of encroachment, the TTC is the projected time the evasive vehicle needs to reach
the position where the encroaching vehicle initiated a lane-changing maneuver if the
evasive vehicle’s speed stays unchanged. Similarly, the difference between times ts and t3
is the TTC for the second conflict point, e.g. for the updated states (position, speed,

acceleration /deceleration) at the beginning of the next simulation time step after the start
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of encroachment, the TTC is the projected time the evasive vehicle needs to reach the
position of the encroaching vehicle at the start of the second time step if its speed stays
unchanged. During the course of a rear-end conflict line event, there could be two more
conflict points depending on the value of the time step parameter in the simulation and
the predefined maximum reference conflict time. The whole course of conflict event may
end before the predefined maximum reference time is reached earlier if the evasive
vehicle makes a lane change to avoid the collision or the encroaching vehicle makes a

lane change to get off the lane or main road.

3.3.2 Computational Algorithm

The computational algorithm in the simulation to calculate and collect the safety

surrogate measurements of rear-end conflict is given in detail as follows:

Triggering A vehicle on the main road suddenly slows down to avoid emergency
condition: or to change lane or to get off the main road. This forces the vehicle

immediately following it to brake hard to avoid a rear-end collision.

1 Record

1.1 The current time step ty;

1.2 The vehicle ID of the current (encroaching) vehicle;

1.3 The position of the encroaching vehicle on the current lane;

1.4 The speed of the encroaching vehicle;
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1.5 The acceleration/deceleration of the encroaching vehicle;

1.6 The vehicle ID of the vehicle immediately behind the encroaching
vehicle on the target lane (evasive vehicle);

1.7 The position of the evasive vehicle on the current lane;

1.8 The speed of the evasive vehicle;

1.9 The acceleration/deceleration of the evasive vehicle;

2 Compute

2.1 The first conflict point (position of encroaching vehicle at time t;);

2.2 The project time t; for the evasive vehicle to reach the first conflict
point;

2.3 Thefirst TTC asts —ty;

2.4 Save TTC =TTC (t1).

3 Repeat step 1 until:

The predefined maximum reference time is reached, or

The encroaching vehicle makes a lane change to another lane, or

The evasive vehicle makes a lane change to another lane, or
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The evasive vehicle totally stops.

Record the updated conflict point of the encroaching vehicle at the

start of the current time step t;

Compute the projected time t, for the evasive vehicle to reach the

updated conflict point;

Compute the current TTC as t, — t;

Check:

If TTC(t) < TTC (t-1), save TTC = TTC(t).

4 Determine whether a conflict occurs when:

4.1

The predefined maximum reference time (5 sec) is reached, or

The encroaching vehicle makes a lane change to another lane, or

The evasive vehicle makes a lane change to another lane, or

The evasive vehicle totally stops.

If TTC < TTC_upper_limit (predefined parameter = 0.5 second),

count and save this event;

Otherwise, do not save event data.

End of the process.
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3.4 Summary

Different algorithms had been developed to compute and record conflicts between
vehicles triggered by lane-changing, merging, or sudden start of braking maneuvers.
These algorithms were adapted from the Federal Highway Administration report of
FHWA-RD-03-050 (2003) exclusively designed for application in simulation through
PARAMICS. In Chapter 4 — Simulation Design, these algorithms will be used as the
baseline of the development of API programs embedded in the PARAMICS modeler to

collect conflict data.
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CHAPTER 4 SIMULATION DESIGN

4.1 Introduction

Due to a limited availability of site data, this evaluation project is conducted using
simulation data collected from PARAMICS, a microscopic simulation tool, which was
calibrated using site data collected on freeways within the state of Virginia before the
evaluation. Different simulation scenarios were produced by applying different truck lane
restriction strategies and varying the geographic/traffic independent variables such as
grade, interchange density, posted speed limit, volume, and truck percentage. These
simulation scenarios cover different truck lane restriction strategies under a variety of
geographic and traffic conditions. In addition, several Application Programming Interface
(API) programs were developed and embedded in the simulation. The main functions of
these API programs were to collect and compute the safety surrogate measurement and

other operational measurements of effectiveness (MOE).

4.2 Calibration of PARAMICS

4.2.1 Calibration Approach

The PARAMICS calibration in this study follows a Latin Hypercube Design
(LHD) procedure proposed by a previous study conducted by Park and Qi (2004). This
procedure employs the LHD algorithm to reduce the extremely large number of
parameter combinations into a reasonable level while still adequately covering the entire

parameter surface. The results in Park and Qi’s study indicated that the LHD approach
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would achieve a similar performance in obtaining optimal parameter sets as the popular
Genetic Algorithm (GA) method even though it does not go through all the possible
combinations of parameters. Since the focus of this study is not the calibration of the
simulation tool, the LHD approach was chosen instead of the GA approach to quickly

obtain the optimal parameters.

4.2 .2 Calibration Parameters

Parameters related to the car-following and lane-changing models in the
simulation were selected to be calibrated because the target of this study is to evaluate the
effectiveness of lane restriction strategies. These parameters were the mean time
headway, mean reaction time, speed memory, curve speed factor, headway factor, and
link speed. The descriptions and default values of these parameters are provided in Table
1. The acceptable range of calibrated parameters should be decided by the discretion of
the research and experience from the previous study. In this study, the parameter ranges
were set the same as those for the freeway section study in the work of Park and Qi

(2003).



Table 1. Calibration Parameters

34

Parameter Description DV:zL:t Acceptable range
Mean headway (sec) The mean target headway, in seconds 1.0 06-22
Mean reaction time (sec) | The mean reaction time of each driver, in seconds 1.0 0.3-1.9
Each vehicle has the facility to remember its own
speed for a number of time steps. This memory
facility is used to implement driver reaction time
by basing the change in speed of the following a
Speed memory vehicle on the speed of the leading vehicle at a 3 1-9
time in the recent past. Changing the size of the
speed memory allows the modeling of larger
reaction times or smaller time steps
Curve speed factor Set a factor to control the amount to which 10 10-50
vehicles slow down due to curvature on road
The target headway for all vehicles can be
modulated using this factor. For example, in a
Headway factor tunnel, the user might know that drivers commonly 10 0.6-14
extend their headway by 50%
Link speed (mph) The desired speed when the volume is low 65 60 - 80

4.2.3 Site Data Collection

The field data for calibration were collected on the 1-295 freeway section at Henrico

where 1-295 intersects 1-64 (Fig. 4 from A to B) including the volumes for every 5 mins

on the ramps and main road, truck percentage, and the travel time for 2 hours from 8:00

to 9:00 am and from 12:00 am to 1:00 pm. Data set | from 8:00 to 9:00 am was used for

calibration and data set Il from 12:00 am to 1:00 pm was used for validation. VVolume

data were the input to the simulation and travel times were used as the measure of

effectiveness (MOE) for the calibration.
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Figure 4 Calibration Network

4.2 .4 Calibration Result

Using the default value and range of the calibration parameters in Table.1l as

inputs, the LHD algorithm generated 200 combinations of these parameters which are

uncorrelated. Five random seeded runs were conducted in PARAMICS for each of the

200 cases resulting in a total of 1000 simulation runs. The average travel time of vehicles

was recorded for each 1000 runs. The results from the five multiple runs were then

averaged to represent each 200 parameter set. Fig. 5 gives the distribution of the average
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travel time of vehicles form the 200 simulation scenarios. The calibration result shows

that the average travel time (61.8 sec) from field data set I falls within the range of travel

times produced by simulation using different scenarios of these parameters.
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Figure 5 Frequency of Travel Time

Twenty combinations (10%) of parameters that produced similar travel times

(around 61.8 sec) with the site data were chosen for the validation. The validation process

is a similar simulation process with calibration except that the input volume data were

those from data set 1l and the parameter sets were 20 combinations which produced a

similar average travel time with the field average travel time (61.8 sec) in data set I. After

the validation simulation runs, the average travel times produced from the 20 parameter

sets were compared with the real travel time from field data set Il. One parameter set (as

shown in Table 2) was chosen as optimal that has reasonable parameter values as well as

producing an average travel time (62.5 sec) that falls within a small range around the real

travel time (59.0 sec) of data set II.
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Parameters Calibrated Value
Mean headway (sec) 1.35
Mean reaction time (sec) 0.53
Speed memory 4
Curve speed factor 15
Headway factor 1.0
72

Link speed (mph)
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4.3 Simulation Scenarios

In order to identify the impact of lane restriction strategies under different
situations, simulation scenarios were developed by varying lane restriction strategies,
traffic conditions (volume, truck percentage) and geometric characteristics (gradient,
speed limit, interchange density). The input values for each key independent variable are
shown in Table 3.

Table 3 Input Values of Independent Variables
Independent Variable Input Values

Truck lane restriction strategies RO0/3, R1/3, R2/3
R0/4, R1/4, R2/4, R3/4

R0/5, R1/5, R2/5, R3/5, R4/5

Grade 0%, 1%, 3%, 5%
Interchange density (no/mile) 0.25, 0.50, 0.75, 1.00

Free flow speed (mph) 55, 65, 75

Main line volume (vphpl) 100, 500, 1000, 1500, 2000
Ramp volume (vphpl) 100, 500, 1000, 1500, 2000
Truck percentage 5%, 15%, 25%, 40%, 50%

The simulation network coded in this study is a straight 5-mile freeway section
with a varied number of lanes, grade, and interchange density. The lane restriction
strategies applied depended on the number of lanes of the freeway in each direction. For a
3-lane freeway (each direction), three strategies were implemented: no restriction,
restricting trucks from using the leftmost lane, and restricting trucks from using the two
leftmost lanes. Similarly, there are four strategies for a 4-lane freeway (each direction)

and five strategies for a 5-lane freeway. Fig. 6 shows different lane restriction alternatives
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considered in this study. Here, “R” represents a truck-restricted lane, e.g. trucks are
restricted from using such lanes, while “U” represents a non-truck-restricted lane, e.g.

trucks are allowed to use such lanes.

Upuguy Jujupu

el I e

R ULU Ul R]R Rl R|U

I e !

RO/3 R1/3 R2/3

0 A O

RO/4 R1/4 R2/4 R3/4

RO/5 R1/5 R2/5 R3/5 R4/5

Note: R n/N means restricting trucks from using the n leftmost lanes on N-lane (in each direction) freeway.

Figure 6 Truck Lane Restriction Strategies

The grade of the freeway section was chosen as an independent variable in the

evaluation in that the grade has a negative influence upon the acceleration ability of
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trucks with a much greater mass than passenger cars. The grade of the freeway changes
from 0%, 1%, 3% to 5%. The number of ramps (both entrance and exit) will impact the
lane-changing maneuvers when a vehicle on the main road intends to get off the road or
when a vehicle on the ramp intends to merge into the mainstream. Hence, the density of
interchange (entrance ramps and exit ramps) was also incorporated into the independent
variables. The interchange density varies from 0.25 to 1.00 with an incremental step of
0.25. Fig. 7 gives a typical schematic layout of an interchange in the simulation network.
At each interchange, an off-ramp is followed by an on-ramp with at a distance of 800 ft.
The lengths of acceleration and deceleration lanes are fixed at 1000 ft. The number of

lanes on the ramp is fixed to be 1, and the width of each lane is 12 ft.

700 ft 1000 ft 700 ft

e EE—
Figure 7 Layout of Interchange in Simulation Network
The posted speed limits were 55, 65, and 75 mph to cover a range around 65 mph
which is a typical posted speed limit on interstate highways in Virginia. The traffic
volumes on both main road and ramp were 100, 500, 1000, 1500 to 2000 vphpl to
incorporate different LOS traffic conditions in the evaluation. For the traffic volume, it is
assumed that there are only two types of vehicles in the traffic mix: passenger cars and

trucks. The configurations of the two types of vehicles are given in Table 4. The truck



41

percentage starts from 0% and incrementally increases to 50% which is nearly the

maximum recorded on 1-81, which carries the highest percentage of trucks in Virginia.

Table 4 Configurations of Cars and Trucks in Simulation

Top
Type | Length | Height | Width | Weight | Speed | Acceleration | Deceleration
ft (m) ft (m) | ft(m) | (Tonne) mph ft/s.s (m/s/s) | ft/s/s (m/s/s)
(km/h)
Car 13.1 4.9 5.2 0.8 98.2 8.2 (2.5) 14.8 (4.5)
(4.0) (1.5) (1.6) (158)
Truck 36.1 13.1 8.2 38.0 80.0 4.6 (1.4) 12.1(3.7)
(11.0) (4.0) (2.5) (128)

percentage) * 4 (gradients) *4(intersection density) = 3,600;

percentage) * 4 (gradients) *4(intersection density) = 4,800;

percentage) * 4 (gradients) *4(intersection density) = 6,000;

Hence the total number of simulation scenarios is computed as:

Scenarios (4 lanes) = 4 (strategies) *3 (FFS) * 5(volume levels) *5(truck

Scenarios (5 lanes) = 5 (strategies) *3 (FFS) * 5(volume levels) *5(truck

Scenarios (3-lane freeway) = 3 (strategies) *3 (PSL) * 5(volume levels) *5(truck

Hence this produces a total of 3,600 + 4,800 + 6,000 = 14,400 different scenarios. In

addition, each scenario was applied for 5 different random seeds which would eliminate

the impact of the random factors in the simulation. Therefore, the analysis of simulation

results was based on 72,000 data points.

4.4 API Programs

The effectiveness of different truck restrictions in this study was evaluated

through MOEs of conflict rate, lane changes, speed distribution by lane, speed
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distribution by vehicle types, volume distribution by lanes, and average speed. To acquire

these measurements, different APl programs were developed to control or collect data

from the simulation runs:

Control_Program.exe: a C++ program controlling the batch execution of
PARAMICS simulation. 14,400 different simulation scenarios were run through
this program in a batch simulation mode. The main function is to select an
appropriate simulation network, apply certain restriction strategies, set the posted
speed limit on each link, release a certain number of vehicles (trucks and cars) to
the simulation network and control the rhythm of the traffic volume, and adjust

the grade of the freeway section.

Lane_changing_conflict.dll: a PARAMICS API program embedded in each
simulation scenario to trace the actions of encroaching and evasive vehicles after
a lane change maneuver and compute safety surrogate measurements to identify a
lane-changing conflict in accordance with the algorithm given in Chapter 3. At

the same time, this program collected the number of lane changes.

merging_conflict.dll: a PARAMICS API program embedded in each simulation
scenario to trace the actions of encroaching and evasive vehicles after a vehicle
merges into the main line from an on-ramp and compute safety surrogate
measurements to identify a merging conflict in accordance with the algorithm

given in Chapter 3.

Rear_end_conflict.dll: a PARAMICS API program embedded in each simulation

scenario to trace the actions of encroaching and evasive vehicles after a vehicle
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suddenly brakes severely and compute safety surrogate measurements to identify

a rear-end conflict in accordance with the algorithm given in Chapter 3.

e Speed.dll: a PARAMICS API program embedded in each simulation scenario to
collect the average speed of vehicles on both restricted and unrestricted lane(s).
At each simulation time step, speeds of all vehicles in the network are scanned
and averaged so the average travel time produced from this program is the
average travel time of vehicles existing at each time step and any places within

the network during the whole simulation process.

e Density.dll: a PARAMICS API program embedded in each simulation scenario to
collect average densities on both restricted and unrestricted lane(s). At each
simulation time step, the number of all vehicles in the network were recorded and
averaged along the length of the investigated lane(s) so the average density
produced from this program is the average density of vehicles existing at each

time step during the whole simulation process.

4.5 Summary

This chapter describes the process of PARAMICS calibration, simulation designs,
and API (Application Program Interface) programs developed to collect both safety and
operational MOEs. The calibration is a general calibration of parameters in the car-
following and lane-changing models in the simulation program using data collected on
Interstate Highways in Virginia although most of the cases considered in the study do not
exist in practice. Another consideration for the calibration is that the author believed the

calibrated parameters, which are basic driver behaviors, would not change significantly
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when a new lane restriction is applied. The simulation scenarios were produced by
varying different factors that would impact safety and operational performance and these
factors were the number of lanes, grade, posted speed limit, volume, truck percentage,
and density of interchanges. The simulations were run in a batch mode under the control
of a program. During the simulations, data upon the lane-changing conflicts, merging
conflicts, rear-end conflict, average speed in restricted and unrestricted lanes, and density
in restricted and unrestricted lanes were collected by the API programs embedded in the

simulation.
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CHAPTER 5 SAFETY PERFORMANCE ANALYSIS

5.1 Introduction

The effectiveness of truck lane restriction strategies (TLRS) can be evaluated

through safety performance as well as operational performance because traffic safety and

traffic mobility are both of importance in evaluating the effective performance of a

freeway facility. This chapter focuses on the safety performance analysis of TLRS using

the MOEs of lane-changing, merging, and rear-end conflicts collected from simulation

experiments as designed in Chapter 4. The safety performance analysis for each type of

conflict was conducted in three stages:

Stage I: Evaluating the impacts of independent variables on conflicts and
identifying the key independent variables that may influence the application of
truck lane restriction strategies. The objective of this stage was to omit the
independent variables that have no significant impact on the effects of the
implementation of TLRS.

Stage 1I: ANOVA analysis for the significance of impacts of different TLRS
on conflicts within each category defined by the key independent variables.
The objective of this stage was to identify situations under which the truck
lane restrictions could be considered because they have significant impacts on
the conflict rates. However, such significant impacts could be positive or
negative.

Stage Ill: Analysis of the impact of key independent variables on the
application of different truck lane restrictions. The objective of this stage was

to identify the impacts of truck lane restriction under each specific situation
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(defined by the key independent variables) on the basis of the ANOVA
analysis in stage Il. This analysis result is used later in Chapter 7 for the
development of guidelines for the application of different lane restriction

strategies.

5.2 Lane-Changing Conflict Analysis
5.2.1 Impacts of Independent Variables on Lane-Changing Conflicts
5.2.1.1 Aggregation of Results for Impact Analysis of Independent Variables

The simulation results for lane-changing conflicts produced from the 14,400
simulation scenarios were aggregated for different values of independent variables -
grades, posted speed limits, interchange density, demand volumes, and truck percentages
vs. different truck lane restriction strategies. Table 5 gives an example of the number of
lane-changing conflicts for 4-lane in each direction freeway for different lane restriction
strategies and traffic and geometric characteristics. In each cell of this table, the first
value gives the average number of total lane-changing conflicts (including truck-related
and car-car conflicts), and the second value gives that for truck-related conflicts only.
Here, the truck-related conflict is defined as one that at least one of two vehicles involved
is a truck while the car-car conflict is the case where both vehicles are passenger cars.
Similar concepts are also applied to the merging and rear-end conflicts. For example, the
value in the first cell for a grade of 0% and restriction RO/4 is the average of lane-
changing conflict rates from 3 (posted speed limits)*5 (demand volumes)*5 (truck

percentages)*4 (intersection densities) = 300 different simulation scenarios.
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Table 5 Number of Lane-Changing Conflicts for a 4-Lane in Each Direction
Freeway for Different Lane Strategies and Traffic and Geometric Characteristics

Number of Lane-Changing Conflicts (all/truck related)”
. Lane Restriction Strategy

Independent Variable RO/ R1/2 Ro/A R3/2
0% 127/35 125/37 124/34 121/27
Grade 1% 122/32 120/33 117/29 117/25
3% 112/29 111/30 111/27 113/23
5% 96/23 97/25 100/22 104/20
55 102/24 101/27 100/24 104/21
PSL (mph) 65 116/30 115/32 114/28 116/24
75 124/34 123/35 124/32 122/25
2000 135/30 149/37 168/38 177/31
Volume 1500 185/46 170/45 175/42 183/37
(vohpl) 1000 176/50 172/51 152/40 143/32
500 70/19 71/21 65/18 62/15

100 5/2 5/2 4/1 4/1
5% 170/13 168/14 171/16 178/18
Truck 15% 141/27 136/30 132/28 148/31
Percentage 25% 114/35 111/36 111/33 117/31
40% 81/36 82/38 83/32 73/21
50% 65/36 69/38 67/30 54/16
Intersection 0.25 50/13 49/13 51/12 50/10
density 0.50 102/26 100/28 100/26 94/21
(Inter./mile) 0.75 133/35 133/37 131/35 134/29
1.00 171/43 172/46 170/38 178/34

*all: number of conflicts for all vehicles
truck-related: number of conflicts in which at least one truck is involved
R n/N means restricting truck from using the n leftmost lanes on N-lane (in each direction) freeway

In order to analyze the impact of different independent variables on the lane-changing
conflicts, conflict data were further aggregated over different truck lane restriction
strategies as shown in Table 6 which gives the average frequency of total lane-changing
conflicts (sum of truck-related and car-car conflicts), average frequency of truck-related
conflicts, lane-changing conflicts, average frequency of car-car lane-changing conflicts,

and the average frequency of lane changes.



Table 6 Number of Lane-changing Conflicts for Different Traffic

and Geometric Characteristics

(a) 3-Lane Highway (in each direction)

Three Lanes in each direction

Lane-changing Conflicts

Independent Variables Total Truck-related | Car-Car | Lane changes
0 92 21 71 1699
Grade 1 86 18 68 1678
(%) 3 82 17 65 1696
5 72 13 59 1725
- 55 73 15 58 1760
POSted(fnpgﬁ;j fimit 65 84 18 66 1692
78 91 20 71 1646
0.25 30 7 23 1078
Interchange Density 0.5 72 15 57 1486
(no./mile) 0.75 101 21 80 1938
1 128 25 103 2295
100 2 1 1 282
500 42 11 31 1243
Volume
(vphpl) 1000 113 27 86 1949
1500 143 28 115 2404
2000 114 20 94 2619
5 129 8 121 1814
15 103 17 86 1760
Truck Percentage
(%) 25 83 22 61 1719
40 56 21 35 1636
50 44 19 25 1567




Table 6 Number of Lane-changing Conflicts for Different Traffic

and Geometric Characteristics

(b) 4-Lane Highway (in each direction)

Four Lanes in each direction

Lane-changing Conflicts

Independent Variables Total Truck-related | Car-Car | lane changes
0 124 32 92 2163
Grade 1 118 29 89 2136
(%) 3 111 27 84 2159
5 98 22 76 2217
Posted speed limit 25 101 23 8 2229
(mph) 65 115 28 87 2165
78 123 31 92 2114
0.25 49 28 21 1422
Interchange Density 0.5 98 25 73 1875
(no./mile) 0.75 132 34 98 2462
1 172 40 132 2916
100 5 2 3 358
500 66 18 48 1583
Volume
(vphpl) 1000 160 43 117 2449
1500 178 42 136 3036
2000 157 34 123 3421
5 171 15 156 2271
15 139 29 110 2224
Truck Percentage
(%) 25 113 34 79 2193
40 80 31 49 2124
50 63 29 34 2034




Table 6 Number of Lane-changing Conflicts for Different Traffic
and Geometric Characteristics

(c) 5-Lane Highway (in each direction)

Five Lanes in each direction

Lane-changing Conflicts

Independent Variables Total | Truck-related | Car-Car | lane changes
0 146 39 107 2466
Grade 1 138 36 102 2444
(%) 3 130 33 97 2469
5 116 27 89 2564
Posted speed limit 25 118 29 89 2540
(mph) 65 134 34 100 2478
78 145 38 107 2439
0.25 58 14 44 1699
Interchange Density 0.5 116 31 85 2181
(no./mile) 0.75 153 40 113 2803
1 201 49 152 3248
100 6 2 4 403
500 76 23 53 1849
Volume
(vphpl) 1000 180 51 129 2823
1500 200 48 152 3456
2000 203 45 158 3934
5 198 17 181 2475
15 159 34 125 2514
Truck Percentage
(%) 25 132 41 91 2528
40 96 40 56 2492
50 76 37 39 2419

5.2.1.2 Impact of Grade on Lane-Changing Conflicts

The frequencies of lane-changing conflicts for both truck-related and car-car types
generally decrease with the increase of the grade of the freeway segment. However, the
lane changes increase with the increase of the grade except that the lane changes at 0%
grade is a little higher than that at 1% grade. Fig. 8 gives an example of this trend for 5-
lane (in each direction) freeway. The reason for this may be due to 1) the slope of the

freeway section decreases the speed of vehicles, and 2) the weak acceleration ability of

trucks increases the gap between trucks and other vehicles.
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Figure 8 Number of Lane-Changing Conflicts and Lane Changes on 5-Lane
(each direction) Freeways with Different Grades

5.2.1.3 Impact of Posted Speed Limit on Lane-Changing Conflicts

The frequencies of lane-changing conflicts for both truck-related and car-car types

generally increase with the increase of the posted speed limits at an evident level.

However, frequency of lane changes decrease with the increase of the posted speed

limits. This phenomenon coincides with the one in the grade analysis and proves that

high speed is a potential cause for lane-changing conflicts. When a vehicle accepts the

same space gap, the higher the speed of the evasive vehicle on the target lane is, the

higher the opportunity is for occurrence of a conflict. Fig. 9 gives an example of this

trend for a 5-lane (in each direction) freeway.
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Figure 9 Number of Lane-Changing Conflicts and Lane Changes on 5-Lane
(each direction) Freeways with Different Posted Speed Limits

5.2.1.4 Impact of Interchange Density on Lane-Changing Conflicts

The frequencies of lane-changing conflicts for both truck-related conflicts and
car-car conflicts increase with the increase in interchange density. The increase in
interchange density directly leads to an increase in the number of lane changes made by
the vehicles intending to get off the main road from exit ramps at the interchanges or the
vehicles intending to move to the left lanes after merging into the main road from the
entrance ramps. The increase of car-car lane-changing conflicts is more evident than that
of truck-related lane-changing conflicts. This may be because the TLRS force the trucks
to stay on the right lane(s) of the freeway section. Hence, the trucks on the main road
need less lane changes to get off and the trucks on the entrance ramp usually stay on the
right lane as soon as they get on the main road. On the contrary, cars would go through
more lane-changing maneuvers to get from the left lane(s) or get from the ramp to the left

lanes. Fig. 10 gives an example of this trend for a 5-lane (each direction) freeway section.
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Figure 10 Number of Lane-Changing Conflicts and Lane Changes on 5-Lane
(each direction) Freeways with Different Intersection Densities

5.2.1.5 Impact of Demand Volume on Lane-Changing Conflicts

The frequencies of lane-changing conflicts for both truck-related and car-car
conflicts increase dramatically with the increase in demand volume when it is less than
1000 vphpl. However, after this point the increase reduces and the frequency of truck-
related conflicts goes down even further with an increase in demand volume. However,
the number of lane changes continues to increase with an increase in demand volume.
Fig. 11 gives an example of this trend for a 5-lane (in each direction) freeway segment.
This could be explained that a high volume, especially one on unrestricted lanes where
trucks travel, results in lower speeds on the network even though lane changes continue
to increase. This indicates that the number of lane changes - the conventional safety
measurement - may not be able to explain the potential of crashes in some cases, for

example, when the demand volume is greater than 1000 vphpl.
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Figure 11 Number of Lane-Changing Conflicts and Lane Changes on 5-Lane
(each direction) Freeways with Different Demand Volumes

5.2.1.6 Impact of Truck Percentage on Lane-Changing Conflicts

The frequency of a car-car lane-changing conflict generally decreases with the
increase in truck percentage in the traffic mix. However, the truck-related lane-changing
conflicts increase at the same time. The combined effect of these two phenomena resulted
in an overall decrease in lane-changing conflicts with the increase of truck percentage.
The reason for this may be that the increase of the truck percentage increased the truck-
related conflicts but also increase the number of vehicles that have a limited lane-
changing ability on the unrestricted lane(s). Hence, the total number of lane-changing
conflicts decreases with the increase of the truck percentage as the total demand volume
keeps stable. At the same time, the increase of truck percentage means a decrease in car
percentage. The frequency of lane change increases with the increase of truck
percentages when truck percentage is lower than 25%. This may be because the increase
in the number of trucks on the unrestricted lanes forces more cars to stay on the left lanes

which require more cars to undertake a lane-changing maneuver in order to get on or off
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the main road. However, at a higher truck percentage, more trucks are confined on the
unrestricted lanes resulting in a decrease in the number of lane changes. Fig. 12 gives an

example of this trend for a 5-lane (each direction) freeway section.
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Figure 12 Number of Lane-Changing Conflicts and Lane Changes on 5-Lane
(each direction) Freeways with Different Truck Percentages

5.2.1.7 Identification of Key Independent Variables

From the analysis of aggregated data (see example in Table 5), it was found that
the independent variables influence the effect of TLRS differently even though they all
have some impact on the frequency of lane-changing conflicts and lane changes as shown
above. At different values of grade of the freeway section, posted speed limit, and
interchange density, the lane-changing conflicts follow a similar trend with the increase
of the number of restricted lanes. Fig. 13 shows an example of the variation of truck-
related lane-changing conflicts with the increase in the number of lanes restricted on a 5-
lane (each direction) freeway segments with different grades. This means these variables
do not impact the selection of a suitable TLRS if a lane-changing conflict is used as the

MOE for evaluation.
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However, the impact of TLRS on lane-changing conflicts varies with different demand

volumes or truck percentages. Fig. 14 gives examples of how the frequencies of truck-

related lane-changing conflicts vary among different truck lane restriction strategies at

different volumes and truck percentages.
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This means that the variables that lead to a decision upon the application of TLRS are
demand volume and truck percentage if the frequency of lane-changing conflict is used as
a decision-making criterion. Hence, thereafter, only demand volume and truck percentage

will be considered in the evaluation.

5.2.1.8 Summary of Impacts of Independent Variables on Lane-changing Conflicts
The impacts of independent variables on lane-changing conflicts were summarized and

presented in Table 7.



Table 7 Summary of Impacts of Independent Variables on Lane-Changing Conflicts
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Independent
Variables

Impact Analysis

Reference
Figure

Key
Factors

Reference
Figure

Grade

The frequencies of lane-changing conflicts for both truck-related and car-car types
generally decrease with the increase of the grade of the freeway segment. However,
the lane changes increase with the increase of the grade except that the lane changes
at 0% grade are a little higher than that at 1% grade.

Figure 8

No

Figure 13

Posted speed limit

The frequencies of lane-changing conflicts for both truck-related and car-car types
generally increase with the increase of the posted speed limits at an evident level.
However, frequency of lane changes decrease with the increase of the posted speed
limits.

Figure 9

No

Figure 13

Interchange Density

The frequencies of lane-changing conflicts for both truck-related and car-car conflicts
increase with the increase in interchange density.

Figure 10

No

Figure 13

Volume

The frequencies of lane-changing conflicts for both truck-related and car-car conflicts
increase dramatically with the increase in demand volume when it is less than 1000
vphpl. However, after this point, increase reduces, and the frequency of truck-related
conflicts goes down even further with an increase of demand volume. However, the
number of lane changes continues to increase with increase in demand volume.

Figure 11

Yes

Figure 14

Truck Percentage

The frequency of car-car lane-changing conflict generally decreases with the increase
in truck percentage in the traffic mix. However, truck-related lane-changing conflicts
increase at the same time. The combined effect of these two phenomena resulted in
an overall decrease in lane-changing conflicts with an increase of truck percentage.

Figure 12

Yes

Figure 14
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5.2.2 Effectiveness of Truck Lane Restrictions on Lane-Changing Conflicts
5.2.2.1 ANOVA Analysis

In order to test whether truck lane restrictions have a significant impact on lane-
changing conflicts, ANOVA analyses were conducted with different restriction strategies
as independent variables and the frequency of lane-changing conflicts (total, truck-
related, car-car) as the dependent variable. These analyses were conducted for each
category defined by three variables — number of lanes, demand volume, and truck
percentage using raw data from the 14,400 simulation scenarios. The results are shown in
Table 7. In each cell of this table, the first value is the p value of ANOVA analysis with a
dependent variable of total lane-changing conflicts, the second value is the p value of
ANOVA analysis with a dependent variable of truck-related lane-changing conflicts, and
the third value is the p value of ANOVA analysis with a dependent variable of car-car
conflicts. Here, the p value represents the probability of a random variable from F

distribution greater than computed statistics F*, which is calculated as:

_ var(between group)  SM between _ SS between /(k —1)

* = 1
var(within group) SM error SS error /(N —k) @)
where:
SS between is the sum of squares between computed as:
k m o
SS between =Y > (x; — X;)? (2)
i=1 j=1

where:
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X, is the mean frequency of lane-changing conflicts within group i corresponding to a
value level of the independent variable; x; is the jth frequency value in group i; k is the

number of group, and m is the number of values in each group.

SS within is the sum of squares error computed as:

SS error = Zn:(xi —x)? (3)

i=1
where:

X is the grand mean of frequency of lane-changing conflicts of all the samples;

X; is the ith frequency value.

Here. the statistics F* follows a F-distribution with degree of freedom of (k-1) and (n-k).
Hence the p value is obtained as:

p = probability{F(k —1,n—k) > F*} 4)
The smaller the p value, the greater probability that the means of x at different values of i
are different. Assuming that i represents the truck percentage and x is the number of lane-
changing conflict, a p value of less than (1 — 90%) = 10% means that, at a confidence
level of 90%, there exist significant differences between the means of lane-changing
conflicts at different levels of truck percentage.

Here, the categories where truck lane restrictions have a significant impact (at a
significance level of 0.10) upon truck-related lane-changing conflicts were preliminarily

identified as highlighted in Table 8.
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Table 8 p Values from ANOVA Analyses of Lane-Changing Conflicts

(a) 3-lane freeway section

Volume Truck Percentage (%)
(vphpl) 5 15 25 40 50
100 | .906/.957/.889 | .981/.737/.864 | .143/.285/.064 | .533/.039/.738 | .193/.008/.729
500 |.905/.851/.916 | .950/.393/.999 | .469/.662/.346 | .102/.055/.295 | .002/.000/.029
1000 |.997/.873/.996 | .891/.921/.817 | .581/.508/.635 | .001/.000/.032 | .000/.000/.012
1500 |.934/.146/.902 | .256/.133/.296 | .299/.015/.525 | .925/.000/.138 | .157/.000/.002
2000 | .492/.012/.586 | .003/.001/.005 | .001/.089/.000 | .019/.000/.001 | .007/.000/.000
Table 8 p Values from ANOVA Analyses of Lane-changing Conflicts
(b) 4-lane freeway section
Volume Truck Percentage (%)
(vphpl) 5 15 25 40 50
100 .626/.127/.723 | .625/.128/.631 | .602/.221/.735 | .817/.213/.958 | .051/.052/.230
500 .895/.889/.886 | .943/.179/.967 | .541/.187/.651 | .062/.008/.301 | .001/.000/.041
1000 | .979/.181/.996 | .751/.742/.594 | .112/.099/.108 | .000/.000/.001 | .000/.000/.007
1500 | .714/.000/.710 | .037/.257/.012 | .220/.025/.079 | .257/.000/.000 | .065/.000/.000
2000 | .347/.000/.603 | .000/.000/.000 | .000/.055/.000 | .000/.000/.000 | .000/.000/.000
(c) 5-lane freeway section
Volume Truck Percentage (%)
(vphpl) 5 15 25 40 50
100 .958/.306/.865 | .984/.875/.990 | .819/.921/.739 | .603/.223/.744 | .207/.149/.553
500 .977/.141/.975 | .992/.104/.928 | .669/.780/.509 | .042/.045/.035 | .000/.000/.014
1000 | .999/.000/.990 | .856/.083/.303 | .000/.000/.000 | .000/.000/.000 | .000/.000/.000
1500 | .621/.000/.307 | .035/.000/.069 | .000/.000/.000 | .000/.000/.000 | .003/.000/.000
2000 | .183/.000/.429 | .000/.000/.000 | .000/.000/.000 | .000/.000/.000 | .000/.000/.000

Note: In each cell of this table, the first value is the p value of ANOVA analysis with a dependent variable
of total lane-changing conflicts, the second value is the p value of ANOVA analysis with a dependent
variable of truck-related lane-changing conflicts, and the third value is the p value of ANOVA analysis
with a dependent variable of car-car lane-changing conflicts.

5.2.2.2 Impacts of Key Variables in Application of Truck Lane Restrictions

The ANOVA analysis above only indicates the significance of impact of TLRS

upon lane-changing conflicts with no information on whether the impact is negative or

positive. In order to investigate the details of the influence of TLRS, lane-changing
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conflicts were analyzed for different TLRS within categories defined by demand volume
and truck percentage (the same as those in the ANOVA analysis). These results were
presented by column graphs in Fig. A0L to Fig. A15 in Appendix A.

Generally, the frequency of the lane-changing conflict decreases with the increase
in the number of lanes restricted when the demand volume is lower than 1500 vphpl.
When the demand volume is greater than 1500 vphpl, the frequency of the lane-changing
conflict increases with the increase in the number of lanes restricted. However, it usually
has a sharp drop when maximum lanes are restricted. The details of the influence of lanes

restricted are discussed as follows for different demand volume levels:

Demand volume is less than 100 vphpl (Fig. A01, A06, All):

e The frequencies of lane-changing conflicts are very low when the truck
percentage is lower than 40%. After that, both the total and truck-related lane-
changing conflicts decease with the increase of number of lanes restricted.

Demand volume is greater than 100 and less than 500 vphpl (Fig. A02, A07, Al12):

e Both the total and the truck-related lane-changing conflicts decrease with the
increase in the number of lanes restricted. However, the benefit of truck lane
restriction becomes apparent only when the truck percentage is over 25%.

Demand volume is greater than 500 and less than 1000 vphpl (Fig. A03, A08, A13):

e The number of car-car lane-changing conflicts decreases with the increase of
number of lanes restricted. The truck-related conflicts increase with the increase
of the number of lanes restricted when truck percentage is below 15%. After that,

truck-related conflicts decrease with the increase in the number of lanes restricted.
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The combination effects led to a similar trend of total conflict with car-car

conflicts.

Demand volume is greater than 1000 and less than 1500 vphpl (Fig. A04, AQ09, Al4):

Truck-related conflicts increase with the increase in the number of lanes restricted
when truck percentage is below 15%. After that, truck-related conflicts decrease
with the increase in the number of lanes restricted. When the truck percentage is
below 40%, car-car conflicts decrease first and increase later with the increase in
the number of lanes restricted; When truck percentage is above 40%, car-car
conflicts increase with the increase of the number of lanes restricted but there is
usually a drop when the maximum number of lanes are restricted. The combined

effect results in a similar trend for total conflicts.

Demand volume is greater than 1500 and less than 2000 vphpl (Fig. A05, A10, A15):

Truck-related conflicts increase with the increase in the number of lanes restricted
when truck percentage is below 25%. After that, truck-related conflicts increase
first and decrease later with the increase in the number of lanes restricted. Car-car
conflicts increase with the increase of the number of lanes restricted but there is
usually a drop when the maximum number of lanes are restricted. The combined

effect results in a similar trend of total conflicts.
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5.3 Merging Conflict Analysis
5.3.1 Impacts of Independent Variables on Merging Conflicts

The same analyses for impacts of independent variables on merging conflicts
were conducted as those on lane-changing conflicts and the results were summarized and

presented in Table 9.



Table 9 Summary of Impacts of Independent Variables on Merging Conflicts
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Independent
Variables

Impact Analysis

Reference
Figure

Key
Factors

Reference
Figure

Grade

The frequencies of merging conflicts for both truck-related and car-car types
generally decrease with the increase in the grade of a freeway segment.

Figure 15

No

Figure 20

Posted speed limit

The frequencies of merging conflicts for both truck-related and car-car types
generally increase with the increase of the posted speed limit.

Figure 16

No

Figure 20

Interchange Density

The frequencies of merging conflicts for both truck-related and car-car conflicts
increase with the increase of interchange density.

Figure 17

No

Figure 20

Volume

The frequencies of merging conflicts for both truck-related and car-car conflicts
increase dramatically with the increase in demand volume when it is less than 1000
vphpl. However, after this point, merging conflicts tend to decrease with the increase
of demand volume.

This trend of reducing merging conflicts after about 1000 vphpl is steeper than that
for lane-changing conflicts because the increase in density on the unrestricted lane(s)
is much higher than the increase in volume as all the trucks are forced to the
rightmost lane by lane restrictions. The high density dramatically decreases the speed
of vehicles on the rightmost lane which makes vehicles easier to merge into the main
road even though the gaps become smaller.

Figure 18

Yes

Figure 21

Truck Percentage

The frequency of car-car merging conflicts decreases with the increase of truck
percentage in the traffic mix. This may be caused by the decrease in car percentage.
However, truck-related merging conflicts increase when truck percentage is lower
than 40%. After that point, it decreases with the increase in truck percentage. It may
be because the trucks occupy nearly half the traffic mix and more trucks are confined
on unrestricted lanes which blocks some merging maneuvers when a truck barrier is
formed.

Figure 19

Yes

Figure 21
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5.3.2 Effectiveness of Truck Lane Restrictions on Merging Conflicts

5.3.2.1 ANOVA Analysis

In order to test whether TLRS have significant impacts on merging conflicts,

similar ANOVA analyses were conducted for merging conflicts as those for lane-

changing conflicts in 5.2.2.1. The results of ANOVA are presented in Table 10:

Table 10 p Values from ANOVA Analysis of Merging Conflicts
(a) 3-lane freeway section

Volume Truck Percentage (%)

(vphpl) 5 15 25 40 50
100 .7150/.216/.474 | .475/.741/.544 | .328/.511/.111 | .924/.304/.134 | .530/.231/.101
500 .846/.470/.921 | .486/.078/.826 | .583/.229/.783 | .386/.203/.823 | .111/.029/.425
1000 | .544/.002/.789 | .575/.001/.927 | .917/.025/.199 | .303/.625/.021 | .002/.002/.001
1500 |.778/.000/.911 | .986/.006/.187 | .012/.792/.000 | .086/.480/.000 | .010/.016/.018
2000 | .875/.000/.715 | .755/.000/.006 | .494/.199/.002 | .073/.516/.000 | .739/.756/.297
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Table 10 p Values from ANOVA Analyses of Merging Conflicts
(b) 4-lane freeway section

Volume Truck Percentage (%)

(vphpl) 5 15 25 40 50
100 .861/.638/.896 | .671/.145/.271 | .028/.127/.537 | .331/.559/.066 | .332/.785/.277
500 .992/.092/.908 | .072/.198/.132 | .212/.015/.709 | .094/.270/.061 | .031/.011/.001
1000 | .565/.000/.899 | .094/.000/.895 | .875/.084/.683 | .017/.002/.001 | .000/.000/.000
1500 |.082/.000/.692 | .358/.000/.169 | .740/.239/.002 | .313/.129/.000 | .837/.021/.000
2000 | .439/.000/.998 | .119/.000/.841 | .909/.430/.063 | .987/.249/.001 | .380/.025/.001

(c) 5-lane freeway section

Volume Truck Percentage (%)

(vphpl) 5 15 25 40 50
100 .648.744/.206 | .901/.636/.970 | .221/.153/.897 | .058/.532/.203 | .217/.073/.391
500 .585/.000/.914 | .081/.000/.541 | .303/.000/.486 | .006/.000/.900 | .538/.133/.897
1000 | .607/.000/.987 | .727/.000/.021 | .014/.464/.000 | .000/.003/.000 | .001/.043/.000
1500 |.932/.000/.075 | .020/.000/.000 | .058/.024/.000 | .083/.752/.000 | .125/.519/.001
2000 | .380/.000/.000 | .045/.000/.000 | .004/.372/.000 | .074/.863/.000 | .083/.319/.000

Note: In each cell of this table, the first value is the p value of ANOVA analysis with a dependent variable
of total merging conflicts, the second value is the p value of ANOVA analysis with a dependent variable of
truck-related merging conflicts, and the third value is the p value of ANOVA analysis with a dependent
variable of car-car merging conflicts.

5.3.2.2 Impacts of Key Variables in Application of Truck Lane Restrictions

The ANOVA analysis above only indicates the significance of the impact of

TLRS upon merging conflicts with no information on whether the impact is negative or

positive. In order to investigate the details of the influence of TLRS, merging conflicts

were analyzed for different TLRS within the categories defined by demand volume and

truck percentage (the same as those in the ANOVA analysis). These results were

presented by column graphs in Fig. BO1 to Fig. B15 in Appendix B.

The details of the influence of lanes restricted are discussed as follows for

different demand volumes:
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The average densities are all below 11 vpmpl (Fig. BO1, B06, B11):

e The magnitudes of the frequencies of merging conflicts are very small and not
significantly impacted by the lane restriction.

Demand volume is greater than 100 and less than 500 vphpl (Fig. B02, B07, B12):

e Generally, the number of merging conflicts increases with the increase in number
of lanes restricted but there is usually a drop when truck percentage is high (>
40%) and the maximum number of lanes are restricted. The frequencies of the
merging conflicts are all below 10 and the increase of truck-related conflict is
only about 2 or 1 even though the ANOVA shows significant influence.

Demand volume is greater than 500 and less than 1000 vphpl (Fig. B03, B08, B13):

e Generally, the frequency of car-car merging conflicts decreases with the increase
in the number of lanes. The frequency of truck-related merging conflict increases
with the increase in the number of lanes restricted when the truck percentage is
lower than 40%. When the truck percentage is higher than 40%, it decreases with
the increase in the number of lanes restricted. This combined effect has led to a
similar trend for the total merging conflicts. However, total merging conflicts start
to decrease with the increase in the number of lanes restricted - around 25% truck
percentage.

Demand volume is greater than 1000 and less than 1500 vphpl (Fig. BO4, B09, B14):

e Generally, the frequency of the truck-related merging conflict increases with the
increase in the number of lanes restricted when the truck percentage is lower than
40%. When the truck percentage is greater than 40%, this trend first becomes flat

and then decreases with the increase of the number of lanes restricted. The car-car
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merging conflicts decrease with the increase of the number of lanes. This
combined effect resulted in a similar trend for the total merging conflict as that for
car-car conflicts except that the total merging conflicts do not change much with

the increase in the number of lanes restricted at a truck percentage of 5%.

Demand volume is greater than 1500 and less than 2000 vphpl (Fig. B0O5, B10, B15):

Generally, the frequency of the truck-related merging conflict increases with the
increase in the number of lanes restricted when the truck percentage is lower than
25%. When the truck percentage is greater than 25%, this trend first becomes flat
and then decreases with the increase in the number of lanes restricted. The car-car
merging conflicts decrease with the increase in the number of lanes. This
combined effect resulted in a similar trend for the total merging conflicts as that

for car-car conflicts.
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5.4 Rear-End Conflict Analysis
5.4.1 Impacts of Independent Variables

The same analyses for the impacts of independent variables on rear-end conflicts
were conducted as those on lane-changing conflicts and the results were summarized and

presented in Table 11.



Table 11 Summary of Impacts of Independent Variables on Rear-end Conflicts
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Independent
Variables

Impact Analysis

Reference
Figure

Key
Factors

Reference
Figure

Grade

The frequencies of truck-related and car-car rear-end conflicts decrease with the
increase in the grade of freeway section.

Figure 22

No

Figure 27

Posted speed limit

The frequencies of truck-related and car-car rear-end conflicts increase with the
increase of the posted speed limits.

Figure 23

No

Figure 27

Interchange Density

The frequencies of truck-related and car-car merging conflicts increase with the
increase in interchange density.

This may be because the increase in interchange density results in the increase in the
number of lane-changing and merging maneuvers which disturb the traffic stream
and produce more rear-end conflicts.

Figure 24

No

Figure 27

Volume

The frequencies of truck-related and car-car rear-end conflicts increase dramatically
with the increase in the demand volume when it is less than 1500 vphpl. However,
after this point, rear-end conflicts tend to decrease with the increase of demand
volume. This may be because the increase in volume certainly increases the chance
of rear-end interaction between vehicles. However, these interactions become less
dangerous when the density is extremely high and the vehicles just follow each other
at low speed.

Figure 25

Yes

Figure 28

Truck Percentage

The frequency of car-car rear-end conflict decreases with the increase in the truck
percentage in the traffic mix. This may be caused by the decrease in the number of
cars.

However, truck related rear-end conflicts increase with the increase in truck
percentage, but this increase curve is very flat. This may be due to the increase in the
number of trucks on unrestricted lanes which certainly increase the chances of truck-
related rear-end interactions but these chances are also diminished by slow speeds
with the increase of truck density on unrestricted lane(s).

Figure 26

Yes

Figure 28
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5.4.2 Effectiveness of Truck Lane Restrictions on Rear-End Conflicts

5.4.2.1 ANOVA Analysis

In order to test whether TLRS have significant impacts on rear-end conflicts, the

similar ANOVA analyses were conducted for rear-end conflicts as those for lane-

changing conflicts in 5.2.2.1. The results of ANOVA are presented in Table 12.

(a) 3-lane freeway section

Table 12 p Values from ANOVA Analyses of Rear-End Conflicts

Volume Truck Percentage (%)

(vphpl) 5 15 25 40 50
100 .775/.124/.530 | .418/.202/.498 | .991/.571/.702 | .111/.318/.215 | .309/.120/.013
500 .888/.487/.906 | .926/.617/.982 | .412/.913/.239 | .856/.972/.673 | .494/.144/.972
1000 | .952/.829/.960 | .913/.655/.943 | .936/.327/.692 | .170/.000/.626 | .000/.000/.265
1500 | .825/.849/.785 | 542/.006/.321 | .174/.000/.352 | .015/.000/.000 | .047/.000/.000
2000 |.172/.022/.127 | .000/.039/.000 | .000/.002/.000 | .001/.000/.000 | .000/.000/.000
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Table 12 p Values from ANOVA Analyses of Rear-End Conflicts
(b) 4-lane freeway section

Volume Truck Percentage (%)

(vphpl) 5 15 25 40 50
100 .279/.611/.225 | .946/.133/.604 | .615/.734/.618 | .057/.105/.060 | .405/.297/.756
500 .945/.449/.942 | .891/.915/.822 | .687/.845/.595 | .663/.831/.490 | .168/.039/.063
1000 |.936/.993/.926 | .838/.652/.880 | .666/.033/.110 | .004/.000/.550 | .000/.000/.069
1500 | .512/.842/.469 | .163/.025/.038 | .019/.000/.000 | .000/.000/.000 | .002/.000/.000
2000 | .002/.178/.001 | .000/.094/.000 | .000/.398/.000 | .000/.000/.000 | .000/.000/.000

(c) 5-lane freeway section

Volume Truck Percentage (%)

(vphpl) 5 15 25 40 50
100 .510/.175/.241 | .695/.241/.933 | .491/.837/.383 | .080/.331/.128 | .377/.521/.483
500 .901/.212/.925 | .493/.045/.775 | .776/.647/.756 | .313/.092/.009 | .031/.000/.008
1000 |.958/.156/.984 | .253/.071/.214 | .597/.000/.194 | .001/.000/.226 | .000/.000/.002
1500 | .700/.372/.603 | .425/.000/.128 | .000/.000/.000 | .000/.000/.000 | .000/.000/.000
2000 | .065/.356/.030 | .000/.044/.000 | .000/.000/.000 | .000/.000/.000 | .000/.000/.000

Note: In each cell of this table, the first value is the p value of ANOVA analysis with a dependent variable
of total rear-end conflicts, the second value is the p value of ANOVA analysis with a dependent variable of
truck-related rear-end conflicts, and the third value is the p value of ANOVA analysis with a dependent
variable of car-car rear-end conflicts.

5.4.2.2 Impacts of Key Variables in Application of Truck Lane Restrictions

The ANOVA analysis above only indicates the significance of impact of TLRS

upon rear-end conflicts with no information on whether the impact is negative or positive.

In order to investigate the details of the influence of TLRS, rear-end conflicts were

analyzed for different TLRS within the categories defined by demand volume and truck

percentage (the same as those in the ANOVA analysis). These results were presented by

column graphs in Fig. CO1 to Fig. C15 in Appendix C.

Generally, the frequency of the car-car rear-end conflict has a much higher value

than that of the truck-related rear-end conflict and the former increases with the increase

of the number of lanes restricted while the latter decreases at the same time. The details
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of the influence of lanes restricted are discussed as follows for different demand volume
levels:
Demand volume is less than 100 vphpl (Fig. C01, C06, C11):

e The frequencies of rear-end conflicts are very low and not significantly influenced
by TLRS.

Demand volume is 500 vphpl (Fig. C02, C07, C12):

e The frequencies of rear-end conflicts are very low and are significantly influenced
only when truck percentage is as high as 50% for 4-lane (in each direction)
highways and 40-50% for 5-lane (in each direction) highways.

Demand volume is greater than 100 and less than 500 vphpl (Fig. C03, C08, C13):

e Generally, the frequencies of truck-related and car-car rear-end conflicts increase
with the increase in the number of lanes restricted when the truck percentage is
below 40%. However, when truck percentage is above 40%, the increase in the
car-car rear-end conflicts becomes flat and the truck-related conflicts decrease
with the increase in the number of lanes restricted. The combined effect results in
a similar trend for total rear-end conflicts as that for truck-related conflicts.

Demand volume is greater than 1000 and less than 1500 vphpl (Fig. C04, C09, C14):

e Generally, the frequency of the car-car rear-end conflict increases with the
increase of the number of lanes restricted while that of the truck-related conflict
decreases at the same time. The combined effect results in a similar trend for the

total rear-end conflicts as that for the car-car rear-end conflicts.
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Demand volume is greater than 1500 and less than 2000 vphpl (Fig. C05, C10, C15):

Generally, the frequency of the car-car rear-end conflict increases with the
increase of the number of lanes restricted while that of the truck-related conflict
does not show a significant variation except for a drop when the maximum
number of lanes are restricted. The combined effect results in a similar trend for

total rear-end conflicts as that for the car-car rear-end conflicts.
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5.5 Summary

This chapter evaluates the safety performance of different TLRS using safety
surrogate measurements, i.e. lane-changing, merging, and rear-end conflicts. Generally,
the independent variables (grade, posted speed limit, interchange density, volume, truck
percentage, lane restrictions) show significant impacts upon different safety surrogate
measurements in different categories (truck-related and car/car conflicts). Demand
volume and truck percentage are identified as the key independent variables that may
lead to a decision on an appropriate TRLS. The influence of the TLRS depends on which
category (defined by demand volume levels and truck percentage) the evaluation is
conducted. Generally, the truck lane restriction has a positive influence on the lane-
changing and merging conflicts while it has a negative impact on rear-end conflicts.
These impacts are greater for trucks than for cars and are greater for lane-related conflicts
(such as lane-changing and merging conflicts) than for other conflicts (such as rear-end

conflicts).
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CHAPTER 6 OPERATIONAL PERFORMANCE ANALYSIS

6.1 Introduction

The objectives of application of truck lane restrictions are twofold - providing fast
lane(s) by removing slow traffic (truck) from such lane(s) and reducing truck-related
crashes by constraining trucks to certain lane(s). This chapter focuses on the operational
performance analysis of truck lane restriction strategies (TLRS) using operational MOES
of average speed and density collected from the simulation experiments as designed in
Chapter 4. The operational performance analysis for each type of conflict was conducted
in three stages:

e Stage I: Evaluating the impacts of independent variables on average speed or
density;

e Stage Il: ANOVA analysis for the significance of impacts of different TLRS
on average speed or density within each category defined by demand volume
and truck percentage

e Stage Ill: Analysis of the impacts of demand volume and truck percentage on

the application of different TLRS.

6.2 Average Speed Analysis

6.2.1 Impacts of Independent Variables on Average Speed
The same analyses for the impacts of independent variables on average speeds
were conducted as those on safety surrogate measurements and the results were

summarized and presented in Table 13. The only difference is that the dependent variable
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discussed here is the average speed on the restricted lanes or on the unrestricted lanes
instead of truck-related or car-car conflicts. In addition, the key independent variables
were chosen to be the same as those in the conflict analysis in order to keep consistency
with the safety performance analysis in developing application guidelines for TLRS later

in Chapter 7.



Table 13 Summary of Impacts of Independent Variables on Average Speed
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Independent
Variables

Impact Analysis

Reference
Figure

Key Factors

Grade

The average speeds decrease with the increase in the grade on both restricted and
unrestricted lanes. However, this trend is steeper for those on unrestricted lanes
because the grade has a less negative influence on the acceleration ability of cars on
restricted lanes than that of trucks on unrestricted lanes. Besides, the average speed
on restricted lanes is much higher that that on unrestricted lanes.

Figure 29

No

Posted speed limit

The average speeds increase with the increase in the posted speed limit on both
restricted and unrestricted lanes.

Figure 30

No

Interchange Density

The average speeds decrease at a small magnitude with the increase in the
interchange density on both restricted and unrestricted lanes.

Figure 31

No

Volume

The average speeds decrease dramatically with the increase in the demand volume on
both restricted and unrestricted lanes. However, this trend is steeper for the average
speed on unrestricted lanes.

This may be because all the trucks within the increased demand volume will be
forced to the unrestricted lanes by the truck lane restriction strategies.

Figure 32

Yes

Truck Percentage

The average speeds decrease with the increase in the truck percentage on both
restricted and unrestricted lanes. However, this trend is steeper for the average speed
on unrestricted lanes.

The increase in the truck percentage increases the truck density on the unrestricted
lanes. The reason for the decrease of average speed of cars on the restricted lane may
be the increased waiting time for getting off the main road caused by more trucks on
the rightmost lane.

Figure 33

Yes
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6.2.2 Effectiveness of Truck Lane Restrictions on Average Speeds
6.2.2.1 ANOVA Analysis

In order to test whether TLRS has a significant impact on average speed, similar
ANOVA analyses were conducted for average speed as those for safety surrogate
measurements in 5.2.2.1. The only difference is that the dependent variables in this
ANOVA analyses are average speed on restricted lanes and unrestricted lanes instead of
truck-related or car-car conflicts. The results of ANOVA are presented in Table 14.

Table 14 p Values from ANOVA Analyses of Average Speed
(a) 3-lane freeway section

Volume Truck Percentage (%)

(vphpl) 5 15 25 40 50
100 .000/.232 .000/.162 .000/.169 .000/.186 .000/.175
500 .000/.042 .000/.011 .000/.003 .000/000. .000/000.

1000 .000/.001 .000/000. .000/000. .000/000. .000/000.
1500 .000/000. .000/000. .001/000. .001/000. .000/000.
2000 .000/000. .000/000. .000/000. .000/000. .000/000.
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Table 14 p Values from ANOVA Analysis of Average Speed
(b) 4-lane freeway section

Volume Truck Percentage (%)

(vphpl) 5 15 25 40 50
100 .001/.041 .000/.029 .000/.068 .000/.122 .000/.079
500 .000/.007 .000/.001 .000/000. .000/000. .000/000.
1000 .000/000. .000/000. .000/000. .000/000. .000/000.
1500 .000/000. .000/000. .000/000. .000/000. .000/000.
2000 .000/000. .000/000. .000/000. .000/000. .000/000.

(c) 5-lane freeway section

Volume Truck Percentage (%)

(vphpl) 5 15 25 40 50
100 .000/.641 .000/.519 .000/.229 .000/.138 .000/.168
500 .000/.013 .000/000. .000/000. .000/000. .000/000.
1000 .000/000. .000/000. .000/000. .000/000. .000/000.
1500 .000/000. .000/000. .000/000. .000/000. .000/000.
2000 .000/000. .000/000. .000/000. .000/000. .000/000.

Note: In each cell of this table, the first value is the p value of ANOVA analysis with a dependent variable
of average speed on restricted lanes and the second value is the p value of ANOVA analysis with a
dependent variable of average speed in unrestricted lanes.

6.2.2.2 Impacts of Key Variables in Application of Truck Lane Restrictions

The ANOVA analysis above only indicates the significance of the impact of
TLRS upon average speed with no information on whether the impact is negative or
positive. In order to investigate the details of the influence of TLRS, average speeds were
analyzed for different TLRS within the categories defined by demand volume and truck
percentage (the same as those in the ANOVA analysis). These results were presented by
column graphs in Fig. D01 to Fig. D15 in Appendix D.

Generally, the average speed on both restricted and unrestricted lanes decreases
with the increase in truck percentages. The average speed has a sudden increase in the
restricted lane when the restriction strategy changes from RO to R1. Thereafter, the

average speeds on both restricted and unrestricted lanes decrease with the increase in the
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number of lanes restricted. However, such a decreasing trend for speeds on unrestricted
lanes is much steeper than those on restricted lanes. The details of the influence of lanes
restricted are discussed as follows for different demand volumes:

Demand volume is less than 100 vphpl (Fig. D01, D06, D11):

e The average speed (around 65 mph) on unrestricted lanes does not change
significantly with the increase in the number of lanes restricted and that on the
restricted lane reaches its peak (above 75 mph) when only the leftmost lane is
restricted.

Demand volume is greater than 100 and less than 500 vphpl (Fig. D02, D07, D12):

e The average speed on restricted lanes reaches its peak (75 mph) when only the
leftmost lane is restricted and it decreases slowly to 70 mph with the increase in
the number of lanes restricted. The average speed on unrestricted lanes does not
change significantly with the increase in the number of lanes restricted when the
truck percentage is below 25% and after that it decreases from 60 to 40 mph with
the increase in the number of lanes restricted.

Demand volume is greater than 500 and less than 1000 vphpl (Fig. D03, D08, D13):

e The average speed on restricted lanes reaches its peak (75 mph) when only the
leftmost lane is restricted and its value decreases slowly to 65 mph with the
increase in the number of lanes restricted. The average speed on unrestricted lanes
does not change much with the increase in the number of lanes restricted when the
truck percentage is below 5% and after that it decreases from 60 to 20 mph with

the increase in the number of lanes restricted.
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Demand volume is greater than 1000 and less than 1500 vphpl (Fig. D04, D09, D14):

The average speed on restricted lanes reaches its peak (70 mph) when only the
leftmost lane is restricted and it decreases to 50 mph with an increase in the
number of lanes restricted when truck percentage is below 40%. However, when
the truck percentage is greater than 40%, the average speed on restricted lanes
tends to increase with the increase in the number of lanes restricted. The average
speed on unrestricted lanes decreases with the increase in the number of lanes

restricted.

Demand volume is greater than 1500 and less than 2000 vphpl (Fig. D05, D10, D15):

The average speed on restricted lanes reaches its peak (40 mph) when only the
leftmost lane is restricted and it decreases to 35 mph with the increase of the
number of lanes restricted when truck percentage is below 25%. However, when
the truck percentage is greater than 25%, the average speed on restricted lanes
tends to increase with the increase in the number of lanes restricted. The average
speed on unrestricted lanes decreases with the increase in the number of lanes

restricted from 30 to 15 mph.
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6.3 Density Analysis
6.3.1 Impacts of Independent Variables on Density

The same analyses for the impacts of independent variables on density were
conducted as those on average speed and the results were summarized and presented in
Table 13. The only difference is that the dependent variable discussed here is the traffic

density on restricted lanes or on unrestricted lanes instead of average speed.



Table 15 Summary of Impacts of Independent Variables on Average Speed
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Irl;i:ﬂ:r;cli::t Impact Analysis Rggﬁlce Key Factors
The average density increases at a small magnitude with the increase in the grade on
Grade both restricted and unrestricted lanes. However, this trend is steeper for that on Figure 34 No
unrestricted lanes than that on the restricted lane.
Posted speed limit The average density Qecreases with the increase in the posted speed limit on both Figure 35 No
restricted and unrestricted lanes.
The average density increases at a small magnitude with the increase in the
Interchange Density intercha_nge density on bqth restricted and l_Jnrestricted lanes. If[ could be concluded Figure 36 No
that the interchange density has much less influence on operational MOEs than on
safety MOEs.
The average density increases dramatically with the increase in the demand volume
Volume on both restricted and unrestricted lanes. However, this trend is steeper for those on Figure 37 Yes
unrestricted lanes.
The average density increases with the increase in the truck percentage on
unrestricted lanes while that on restricted lanes goes in the opposite direction. This
Truck Percentage may be because the increase of truck percentage increases the number of trucks on Figure 38 Yes

unrestricted lanes. However, it also decreases the number of cars on restricted lanes
when the total volume keeps stable.
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Freeways with Different Truck Percentages
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In order to test whether TLRS has significant impacts on traffic density, similar

ANOVA analyses were conducted for density as those for safety surrogate measurements

in 5.2.2.1. The only different is that the dependent variables in the ANOVA analyses are

density on restricted lane and unrestricted lane instead of truck-related or car-car

conflicts. The results of ANOVA are presented in Table 16.

(a) 3-lane freeway section

Table 16 p Values from ANOVA Analysis of Average Density

Volume Truck Percentage (%)

(vphpl) 5 15 25 40 50
100 .000/.000 .000/.000 .000/.000 .000/000. .000/000.
500 .000/000. .000/000. .000/000. .000/000. .000/000.

1000 .000/000. .000/000. .000/000. .000/000. .000/000.
1500 .000/000. .000/000. .000/000. .000/000. .000/000.
2000 .000/000. .000/000. .000/000. .000/000. .000/000.
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Table.16 p Values from ANOVA Analyses of Average Density
(b) 4-lane freeway section

Volume Truck Percentage (%)

(vphpl) 5 15 25 40 50
100 .000/.000 .000/.000 .000/.000 .000/000. .000/000.
500 .000/000. .000/000. .000/000. .000/000. .000/000.
1000 .000/000. .000/000. .000/000. .000/000. .000/000.
1500 .000/000. .000/000. .000/000. .000/000. .000/000.

2000 .000/000. .000/000. .000/000. .000/000. .000/000.
(c) 5-lane freeway section

Volume Truck Percentage (%)

(vphpl) 5 15 25 40 50
100 .000/.000 .000/.000 .000/.000 .000/000. .000/000.
500 .000/000. .000/000. .000/000. .000/000. .000/000.
1000 .000/000. .000/000. .000/000. .000/000. .000/000.
1500 .000/000. .000/000. .000/000. .000/000. .000/000.

2000 .000/000. .000/000. .000/000. .000/000. .000/000.

6.3.2.2 Impacts of Key Variables in Application of Truck Lane Restrictions

The ANOVA analysis above only indicates the significance of impact of TLRS

upon traffic density with no information on whether the impact is negative or positive. In

order to investigate the details of the influence of TLRS, traffic density was analyzed for

different TLRS within the categories defined by demand volume and truck percentage

(the same as those in the ANOVA analysis). These results were presented by column

graphs in Fig. EO1 to Fig. E15 in Appendix E.

Generally, the average densities on restricted lanes and unrestricted lanes decrease

with the increase in truck percentages. The average density has a sudden decrease in the

restricted lane when the restriction strategy changes from RO to R1. The details of the

influence of lanes restricted are discussed as follows for different demand volume levels:

Demand volume is less than 100 vphpl (Fig. EO1, E06, E11):

e The average densities are all below 11 vpmpl (LOS A).

Demand volume is greater than 100 and less than 500 vphpl (Fig.E02, EQ7, E12):
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Most of the average densities are below 18 vpmpl (LOS B) while some of those

fall above 18 but below 26 vpmpl (LOS B).

Demand volume is greater than 500 and less than 1000 vphpl (Fig.E03, E08, E13):

All the average densities in restricted lanes below 18 vpmpl (LOS B). For a 3-lane
freeway, the density in restricted lanes is above 35 vpmpl (LOS E) when truck
percentage is 50% and R2/3 is applied; for a 4-lane freeway, the density in
restricted lanes is above 35 vpmpl (LOS E) when truck percentage is over 40%
and R3/4 is applied; for a 5-lane freeway, the density in restricted lanes is above
35 vpmpl (LOS E) when truck percentage is over 25% and R3/5 or R4/5 is

applied.

Demand volume is greater than 1000 and less than 1500 vphpl (Fig. EO4, EQ9, E14):

All the average densities in restricted lanes below 26 vpmpl (LOS C). For a 3-lane
freeway, the density in restricted lanes is above 35 vpmpl (LOS E) when truck
percentage is 25% and R2/3 or R1/3 is applied; for a 4-lane freeway, the density
in restricted lanes is usually above 35 vpmpl (LOS E) when truck percentage is
over 15%; for a 5-lane freeway, the density in restricted lanes is above 35 vpmpl

(LOS E) when truck percentage is over 5%.

Demand volume is greater than 1500 and less than 2000 vphpl (Fig.D05, D10, D15):

The average density in the unrestricted lane is usually greater than 35 vpmpl
(LOS E). The density in the restricted lane decreases with the increase of the

number of lanes restricted when truck percentage is over 25%.
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6.4 Summary

This chapter evaluates the operational performance of different truck lane
restriction strategies on the basis of operational MOEs — average speed and traffic
density. Generally, the independent variables (grade, posted speed limit, interchange
density, volume, truck percentage, lane restrictions) show significant impacts upon
different operational MOEs in different categories (on restricted and on unrestricted
lanes). The influence of the truck lane restriction strategies depends on which category
(defined by demand volume level and truck percentage) the evaluation is conducted.
Generally, the truck lane restriction has a positive influence upon the LOS within

restricted lanes while it has a negative impact on those within unrestricted lanes.
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CHAPTER 7 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

7.1 Introduction

This study evaluated the effectiveness of truck lane restriction strategies (TLRS)
under different traffic and geometric conditions using conflict as the safety MOE. This
chapter summarizes the evaluation results produced in Chapters 5 and 6. These results
were used in combination to develop comprehensive guidelines for the application of
TLRS with the objectives of increasing LOS on restricted lanes and decreasing the

probability of truck-related crashes. In addition, future research needs are identified.

7.2 Summary of Analysis

This study examined the safety performance of TLRS on a freeway through
simulation. A safety surrogate measurement — conflict — was used as the MOE for the
evaluation. Three types of conflict events that represent critical situations that have a
strong potential for crashes on freeways were analyzed for different TLRS under various
geometric and traffic conditions. The geometric conditions consisted of the number of
lanes in each direction (3, 4, and 5), uphill grade of the freeway section (0%, 1%, 3%,
and 5%), and the interchange density (0.25/mile, 0.5/mile, 0.75/mile, and 1.00/mile). The
traffic conditions include the posted speed limit (55 mph, 65 mph, and 75 mph), the
traffic volume (100, 500, 1000, 1500, and 2000 veh/hr/lane), and truck percentage in the
traffic mix (5%, 15%, 25%, 40%, and 50%). These geometric and traffic characteristics

produced 14,400 different simulation scenarios on a 5-mile freeway section.
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In order to capture and compute the safety surrogate measurements, three
PARAMICS API programs were developed including lane_changing_conflict.dll,
merging_conflict.dll, and rear-end_conflict.dll. These programs were embedded in the
simulation procedure and run in parallel mode with the simulation modeler. Their
functions were scanning the simulation objects to identify potential events that may lead
to a conflict, tracing vehicles involving such potential events, and computing safety
surrogate measurements to decide whether a conflict occurred. In addition, two other
PARAMICS API programs speed.dll and density.dll were developed to collect the

operational MOEs — average speed and density on both restricted and unrestricted lanes.

From the simulation results produced by the above simulation design and
PARAMICS API programs, the safety and operational MOEs were separately analyzed
after aggregating the simulation data for different truck lane restriction strategies on
freeway sections with different grades, interchange densities, posted speed limits, volume
levels, and truck percentages. These analyzes were conducted in stages: first, the impact
of each individual independent variable was analyzed, and as a result, the key variables
that had a significant impact on the effect of the TLRS were identified; second, ANOVA
analysis was conducted to examine the significance of the impacts of the key independent
variables on MOEs for different conditions; third, the details of the variation of MOEs
with the increase of the number of lanes restricted were discussed for different categories

defined by the key independent variables.
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7.3 Conclusions

Based on the results of the analyses conducted in Chapters 5 and 6, the following
conclusions were made:

7.3.1 Impact of Truck Lane Restrictions

Generally, the frequency of lane-changing conflicts decreases with the increase in
the number of lanes restricted when the demand volume is lower than 1500 vphpl. When
the demand volume is greater than 1500 vphpl, the frequency of the lane-changing
conflicts increases with the increase in the number of lanes restricted. However, it usually
has a sharp drop when the possible maximum lanes are restricted. The frequency of the
truck-related merging conflicts increases with the increase in the number of lanes
restricted while the frequency of car-car merging conflicts decreases at the same time.
However, this trend for truck-related merging conflicts tends to go in the opposite
direction when the demand volume is over 1500 vphpl. The frequency of rear-end
conflicts increases with the increase in the number of lanes restricted except for cases
when the demand volume is below 1000 vphpl and the truck percentage is over 40%. For
these cases, frequency of rear-end conflicts decreases with the increase in the number of
lanes restricted. Significant influences of truck lane restrictions usually exist when

demand volume is over 1000 vphpl.

The truck lane restriction strategies have a significant impact on the average speed
and density on both restricted and unrestricted lanes for all combinations of different
demand volumes and truck percentages. Generally, average speeds on both restricted and

unrestricted lanes decrease with the increase in truck percentages. The average speed
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suddenly increases in restricted lanes when the TLRS changes from RO to R1. Thereafter,
average speeds on both restricted and unrestricted lanes decrease with the increase in the
number of lanes restricted. However, the decreasing trend for speeds on unrestricted lanes
is much steeper than that on restricted lanes. The analysis on average densities produces
similar results as those for average speeds analysis as these variables are related to each

other.

7.3.2 Impact of Grade of the Freeway Section

The frequencies of lane-changing, merging, and rear-end conflicts generally
decrease with the increase in the grade of freeway section. This phenomenon is more
evident for trucks than cars which may be caused by the weak acceleration ability of
trucks on the uphill freeway sections resulting in an increase in the gaps between trucks
and other vehicles. On the other hand, the average speeds on both restricted and
unrestricted lanes decrease with the increase in the grade while the densities increase at

the same time.

7.3.3 Impact of Posted Speed Limit on the Freeway Section

The frequencies of lane-changing, merging, and rear-end conflicts increase with
the increase in the posted speed limit. This indicates high speed is a potential cause for all
kinds of conflicts. On the other hand, the average speeds on both restricted and
unrestricted lanes increase with the increase of the posted speed limit while the densities

decrease at the same time.
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7.3.4 Impact of Traffic Volume on the Freeway Section

The frequencies of lane-changing conflicts increase dramatically with the increase
in the demand volume when it is below 1000 vphpl. However, the rate of increase
decreases when the demand volume is over 1000 vphpl with the truck-related lane-
changing conflicts reducing slightly. The merging conflicts first increase with the
increase in the demand volume when it is below 1000 vphpl and reduces sharply when
the demand volume is over 1000 vphpl. A similar trend occurred for rear-end conflicts
except that the changing point is around the demand volume level of 1500 vphpl and the
truck-related curve is much flatter than those of total and car-car conflicts. On the other
hand, average speeds on both restricted and unrestricted lanes decrease with the increase

of volume while the densities increase at the same time.

7.3.5 Impact of Interchange Density on the Freeway Section

The frequencies of lane-changing, merging, and rear-end conflicts increase with
the increase in the interchange density. Apparently, more interchanges will increase the
number of lane changes made by the vehicles that intend to get off the main road from
exit ramps at the interchanges and increase the number of merging maneuvers for
vehicles that intend to merge onto the main road from the entrance ramps. The frequent
lane-changing or merging maneuvers also give rise to more sudden braking actions by the
vehicle immediately following on the target lane. This is one of the main reasons for the
increase in rear-end conflicts. However, the increase in car-car lane-changing conflicts is
much more evident than that in truck-related lane-changing conflicts because truck lane

restrictions force the trucks to stay on right lane(s) of the freeway section. Hence, the
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trucks on the main road need less lane changes to get off and the trucks on the entrance

ramp usually stay on the right lane as soon as they get on the main road.

7.3.6 Impact of the Truck Percentage in the Traffic Mix

The frequency of car-car conflicts decreases with the increase in the truck
percentage in the traffic mix. However, truck-related conflicts increase first with the
increase of the truck percentage and decrease later when the truck percentage is over
25%. The combined effect of these two phenomena resulted in a trend of total conflicts
that is similar to that of car-car conflicts. The reason for this may be that the increase in
the truck percentage increased truck-related conflicts but the increase in the truck
percentage also means a decrease in the car percentage in the traffic mix on both the main
road and ramp. This resulted in a decrease in car-car conflicts. However, when the truck
percentage is higher than 25%, the large volume of trucks forms a barrier on unrestricted

lane(s) with extremely slow traffic and blocks some vehicles from entering freely.

7.3.7 Significant Impact of Independent Variables

The ANOVA analysis results indicate that, for a significance level of 0.1, the
independent variables — truck lane restrictions, grade, interchange density, posted speed
limit, volume, and truck percentage have a significant impact on all types of conflicts
(lane-changing, merging, and rear-end) for all categories (total conflict events, truck-
related conflict events, and car-car conflict events). These independent variables also

have a significant impact on operational measures of average speed and density except
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that the influence of grade for car-car conflicts is not as significant as that for truck-

related conflicts.

The influence of TLRS on conflicts and operational performances depends on

investigated categories defined by the demand volume and truck percentage. Generally,

more significant impact is found when demand volume is greater and trucks occupy a

larger portion in the traffic mix.

7.4 Proposed Guidelines

Comprehensive guidelines (Table 17) for the application of truck lane restrictions were

developed after combining the results from both the safety and operational analyses using

the following criteria:

The truck lane restriction should provide a traffic situation of LOS C or better on

a restricted lane, and LOS D or better on an unrestricted lane, and

If the LOS has been as low as E, no restriction should be applied, and

There should be no significant increase in frequency of merging conflict, and

There should be a significant decrease in lane-changing conflict or rear-end

conflict, and

Reducing lane-changing conflicts has a higher priority than reducing rear-end
conflicts in deciding the application of lane restrictions when there is a conflict

between the influences of the lane restriction on them.
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e Reducing truck-related conflicts has a higher priority than reducing car-car
conflicts in deciding the application of lane restrictions when there is a conflict
between the influences of the lane restriction on them.

Table 17 Comprehensive Truck Lane Restriction Recommendation
(a) 3-lane freeway section

Volume Truck Percentage (%)
(vphpl) 5 15 25 40 50
<100 NA NA NA NA NA
100 - 500 NA NA NA
500 - 1000
1000 - 1500
1500 - 2000
(b) 4-lane freeway section
Volume Truck Percentage (%)
(vphpl) 5 15 25 40 50
<100 NA NA NA NA NA
100 - 500 NA NA NA
500 - 1000
1000 - 1500
1500 - 2000
(c) 5-lane freeway section
Volume Truck Percentage (%)
(vphpl) 5 15 25 40 50
<100 NA NA NA NA NA
100 - 500 NA NA
500 - 1000
1000 - 1500
1500 - 2000

Different guidelines can be produced for different priorities and concerns of the
decision-maker. For example, should the reduction of lane-changing conflicts take
priority over reducing merging conflicts? In order to assist a decision-maker, studies
should be conducted on the severity and crash types that are associated with different

conflicts on freeways.
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7.5 Future Research

This study has not covered all factors that could have been considered in the

simulation due to limited time and availability of data. Future research should attempt to

incorporate these factors. These future research needs include:

Develop conflict and average speed regression models using simulation data;

Enlarge the range or include more values within the current range of demand
volume level and truck percentage to produce more detailed guidelines for

application of truck lane restriction in practice;

Incorporate the severity of crashes occurring from different types of conflicts into

the analysis in addition to the occurrence of conflicts;

Consider more types of truck lane restriction strategies, such as restricting trucks

from using certain rightmost lane(s);

Evaluate truck lane restriction strategies using site data, e.g. conflict data

observed from a real freeway section when time and budget are sufficient;

Correlate conflicts in simulation to crashes on site to investigate or prove a

relationship between the surrogate safety measurements and crashes;

Incorporate differential speed limits for trucks and passenger cars;

Incorporate the effect of weather conditions;
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e Incorporate some human factor characteristics, such as aggressive drivers.
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APPENDIX A

Graphs of Lane-Changing Conflicts Analysis

Please note in the following graphs:

e In each category, the first bar represents the frequency of total lane-changing
conflicts, the second the frequency of car-car lane-changing conflicts, and the
third represents the frequency of truck-related lane-changing conflicts.

e Categories in the horizontal axis are defined by truck percentage and truck lane
restriction strategy. For example, T25%_R2 means the truck percentage is 25%
and trucks are restricted from the two leftmost lanes.
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Figure AO1 lane-changing conflicts on 3-lane freeway with demand volume of 100 vphpl
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Figure AO2 lane-changing conflicts on 3-lane freeway with demand volume of 500 vphpl
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Figure AO3 lane-changing conflicts on 3-lane freeway with demand volume
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Figure A04 lane-changing conflicts on 3-lane freeway with demand volume
of 1500 vphpl
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Figure AO5 lane-changing conflicts on 3-lane freeway with demand volume

of 2000 vphpl
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Figure A06 lane-changing conflicts on 4-lane freeway with demand volume of 100 vphpl
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Figure AQ7 lane-changing conflicts on 4-lane freeway with demand volume of 500 vphpl
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Figure A08 lane-changing conflicts on 4-lane freeway with demand volume
of 1000 vphpl
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Figure AQ9 lane-changing conflicts on 4-lane freeway with demand volume

of 1500 vphpl
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Figure A10 lane-changing conflicts on 4-lane freeway with demand volume

of 2000 vphpl
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Figure A1l lane-changing conflicts on 5-lane freeway with demand volume of 100 vphpl
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Figure A12 lane-changing conflicts on 5-lane freeway with demand volume of 500 vphpl
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Figure A13 lane-changing conflicts on 5-lane freeway with demand volume

of 1000 vphpl
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Figure A14 lane-changing conflicts on 5-lane freeway with demand volume
of 1500 vphpl
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Figure A15 lane-changing conflicts on 5-lane freeway with demand volume
of 2000 vphpl
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APPENDIX B

Graphs of Merging Conflicts Analysis

Please note in the following graphs:

e In each category, the first bar represents the frequency of total merging conflicts,
the second the frequency of car-car merging conflicts, and the third bar represents
the frequency of truck-related merging conflicts.

e Categories in the horizontal axis are defined by truck percentage and truck lane
restriction strategy. For example, T25%_R2 means the truck percentage is 25%
and trucks are restricted from the two leftmost lanes.
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Figure BO1 merging conflicts on 3-lane freeway with demand volume of 100 vphpl
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Figure BO2 merging conflicts on 3-lane freeway with demand volume of 500 vphpl
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Figure BO3 merging conflicts on 3-lane freeway with demand volume of 1000 vphpl
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Figure BO4 merging conflicts on 3-lane freeway with demand volume of 1500 vphpl
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Figure BO5 merging conflicts on 3-lane freeway with demand volume of 2000 vphpl
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Figure BO6 merging conflicts on 4-lane freeway with demand volume of 100 vphpl
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Figure BO7 merging conflicts on 4-lane freeway with demand volume of 500 vphpl
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Figure BO8 merging conflicts on 4-lane freeway with demand volume of 1000 vphpl
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Figure BO9 merging conflicts on 4-lane freeway with demand volume of 1500 vphpl
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Figure B10 merging conflicts on 4-lane freeway with demand volume of 2000 vphpl
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Figure B11 merging conflicts on 5-lane freeway with demand volume of 100 vphpl
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Figure B12 merging conflicts on 5-lane freeway with demand volume of 500 vphpl
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Figure B13 merging conflicts on 5-lane freeway with demand volume of 1000 vphpl
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Figure B14 merging conflicts on 5-lane freeway with demand volume of 1500 vphpl
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Figure B15 merging conflicts on 5-lane freeway with demand volume of 2000 vphpl
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APPENDIX C

Graphs of Rear-End Conflicts Analysis

Please note in the following graphs:

e In each category, the first bar represents the frequency of total rear-end conflicts,
the second the frequency of car-car rear-end conflicts, and the third bar represents
the frequency of truck-related rear-end conflicts.

e Categories in the horizontal axis are defined by truck percentage and truck lane
restriction strategy. For example, T25%_R2 means the truck percentage is 25%
and trucks are restricted from the two leftmost lanes.
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Figure CO1 rear-end conflicts on 3-lane freeway with demand volume of 100 vphpl
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Figure C02 rear-end conflicts on 3-lane freeway with demand volume of 500 vphpl
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Figure C03 rear-end conflicts on 3-lane freeway with demand volume of 1000 vphpl
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Figure CO4 rear-end conflicts on 3-lane freeway with demand volume of 1500 vphpl
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Figure CO5 rear-end conflicts on 3-lane freeway with demand volume of 2000 vphpl
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Figure CO6 rear-end conflicts on 4-lane freeway with demand volume of 100 vphpl
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Figure CO7 rear-end conflicts on 4-lane freeway with demand volume of 500 vphpl
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Figure CO8 rear-end conflicts on 4-lane freeway with demand volume of 1000 vphpl
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Figure CO9 rear-end conflicts on 4-lane freeway with demand volume of 1500 vphpl
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Figure C10 rear-end conflicts on 4-lane freeway with demand volume of 2000 vphpl
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Figure C11 rear-end conflicts on 5-lane freeway with demand volume of 100 vphpl
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Figure C12 rear-end conflicts on 5-lane freeway with demand volume of 500 vphpl
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Figure C13 rear-end conflicts on 5-lane freeway with demand volume of 1000 vphpl
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Figure C14 rear-end conflicts on 5-lane freeway with demand volume of 1500 vphpl
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APPENDIX D
Graphs of Average Speed Analysis

Please note in the following graphs:

e In each category, the first bar represents the average speed in restricted lanes, the
second the average speed in unrestricted lanes, and the third bar represents
average speed of trucks.

e Categories in the horizontal axis are defined by truck percentage and truck lane
restriction strategy. For example, T25%_R2 means the truck percentage is 25%
and trucks are restricted from the two leftmost lanes.
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Figure DO1 Average speed on 3-lane freeway with demand volume level of 100 vphpl
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Figure D02 Average speed on 3-lane freeway with demand volume level of 500 vphpl
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Figure D03 Average speed on 3-lane freeway with demand volume level of 1000 vphpl
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Figure D04 Average speed on 3-lane freeway with demand volume level of 1500 vphpl
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Figure DO5 Average speed on 3-lane freeway with demand volume level of 2000 vphpl
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Figure D06 Average speed on 4-lane freeway with demand volume level of 100 vphpl
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Figure DO7 Average speed on 4-lane freeway with demand volume level of 500 vphpl
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Figure D08 Average speed on 4-lane freeway with demand volume level of 1000 vphpl
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Figure D09 Average speed on 4-lane freeway with demand volume level of 1500 vphpl

Figure D10 Average speed on 4-lane freeway with demand volume level of 2000 vphpl
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Figure D11 Average speed on 5-lane freeway with demand volume level of 100 vphpl
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Figure D12 Average speed on 5-lane freeway with demand volume level of 500 vphpl
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Figure D13 Average speed on 5-lane freeway with demand volume level of 1000 vphpl
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Figure D14 Average speed on 5-lane freeway with demand volume level of 1500 vphpl
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Figure D15 Average speed on 5-lane freeway with demand volume level of 2000 vphpl
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APPENDIX E

Graphs of Average Density Analysis

Please note in the following graphs:
e In each category, the first bar represents the density in restricted lanes, and the
second represents the density in unrestricted lanes.
e Categories in the horizontal axis are defined by truck percentage and truck lane
restriction strategy. For example, T25%_R2 means the truck percentage is 25%
and trucks are restricted from the two leftmost lanes.
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Figure EO1 Average density on 3-lane freeway with demand volume level of 100 vphpl
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Figure E02 Average density on 3-lane freeway with demand volume level of 500 vphpl
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Figure EO3 Average density on 3-lane freeway with demand volume level of 1000 vphpl
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Figure E04 Average density on 3-lane freeway with demand volume level of 1500 vphpl
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Figure EO5 Average density on 3-lane freeway with demand volume level of 2000 vphpl
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Figure E06 Average density on 4-lane freeway with demand volume level of 100 vphpl
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Figure EO7 Average density on 4-lane freeway with demand volume level of 500 vphpl
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Figure EO8 Average density on 4-lane freeway with demand volume level of 1000 vphpl
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Figure E09 Average density on 4-lane freeway with demand volume level of 1500 vphpl
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Figure E10 Average density on 4-lane freeway with demand volume level of 2000 vphpl
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Figure E11 Average density on 5-lane freeway with demand volume level of 100 vphpl
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Figure E12 Average density on 5-lane freeway with demand volume level of 500 vphpl



157

@ Density in restricted lanes B Density in unrestricted lanes
< 100
c
S 80
i)
£ 60
<
()
2 40 A
Pr
‘® 20 -
c
[}
[a)] 0 -
R e
QA\Q, AR &\, K\Q,4\Q,K\0, K\Q, &K\ K\Q, K\Q, K\Q &\Q, &\Q, K\Q &\ K\Q &\Q K\Q K10 K\ &\Q L\Q L\Q K\0 L\©
SRR RS
truck percentage and truck lane restriction strategy

Figure E13 Average density on 5-lane freeway with demand volume level of 1000 vphpl
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Figure E14 Average density on 5-lane freeway with demand volume level of 1500 vphpl
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Figure E15 Average density on 5-lane freeway with demand volume level of 2000 vphpl



